Introduction

There is a very important topic in the Operation System: Security. And one of the questions the Security deals with is the Public Key and Private Key Pairs. Here in this article, we focus on a topic related to the Public Key: Digital Signature and Public Key Infrastructure (PKI):

In today's commercial environment, establishing a framework for the authentication of computer-based information requires a familiarity with concepts and professional skills from both the legal and computer security fields. Combining these two disciplines is not an easy task. Concepts from the information security field often correspond only loosely to concepts from the legal field, even in situations where the terminology is similar. For example, from the information security point of view, "digital signature" means the result of applying to specific information certain specific technical processes described below. The historical legal concept of "signature" is broader. It recognizes any mark made with the intention of authenticating the marked document. In a digital setting, today's broad legal concept of "signature" may well include markings as diverse as digitized images of paper signatures, typed notations such as "/s/ John Smith," or even addressing notations, such as electronic mail origination headers.

From an information security viewpoint, these simple "electronic signatures" are distinct from the "digital signatures" described in this tutorial and in the technical literature, although "digital signature" is sometimes used to mean any form of computer- based signature. These Guidelines use "digital signature" only as it is used in information security terminology, as meaning the result of applying the technical processes described in this tutorial.

To explain the value of digital signatures in legal applications, this tutorial begins with an overview of the legal significance of signatures. It then sets forth the basics of digital signature technology, and examines how, with some legal and institutional infrastructure, digital signature technology can be applied as a robust computer-based alternative to traditional signatures.

The “Paperless office” concept has been around for a decade. It has failed to move from theory to reality. Because of the cultural tradition, people used to use tangible paper, handwritten signature and sealed envelops. It is also because of the lack of legal admit, the lack of infrastructure to support the “paperless” formalities. The large impediment is the technology itself. People have tried to mimic the paper-based world by attempting to protect the medium through which communications are conveyed. The problem with the private networks, such as Local Area Networks and Wide Area Networks, is their inability to scale to the proportions necessary to satisfy the demands of the “global economy”. (slide 3)
The Internet and electronic commerce

The Internet gives possibility to the realization of paperless office. But it is lack of sufficient information security and legal framework to enable electronic commerce to be wide spread. With the public key cryptography technology and the legal recognition of digital signature, the elimination of paper becomes true. (slide 4)
Fundamental requirement

All legally binding communications or transactions, whether electronic or paper-based, must meet these fundamental requirements: The first requirement is that the message provide for sender authenticity to enable the recipient (or relying party) to determine who really sent the message and if that individual is, in fact, authorized to commit his organization to the transaction. The second major requirement is that there be some means to ascertain that the message has integrity. The recipient must be able to determine whether or not the message received has been altered or is incomplete. The third, and most critical, requirement addresses the ability to “prove up” the message in court. Referred to as non-repudiation, this requires some way to ensure that the sender cannot falsely deny sending the message, nor falsely deny the contents of the message. Finally, certain signature formalities must be satisfied. For example, the statute of fraud specifies “in writing” and signature requirement s for transactions over a certain dollar value or time period. (slide 5)
Satisfying the requirements in electronic commerce
In electronic commerce, the focus to date has been on securing the medium through the use of private leased lines and networks. This is prohibitively expensive and, in some cases, unfeasible for potential parties to a transaction. For the Internet to offer an inexpensive and ubiquitous solution, the focus must be on information security. The goal here is to protect the message, not the medium. The Internet is insecure - potentially millions of people have access and “hackers” can intercept anything traveling over the wire. There is no way to make it a secure environment; it is, after all, a public network, hence its availability and affordability. In order for it to serve our purposes as a vehicle for legally binding transactions, efforts must be directed at securing the message itself, as opposed to the transport mechanism. Public key cryptography, a data encryption technique, provides just that kind of message protection. Originally recognized within the context of electronic funds transfer and UCC Article 4A, digital signatures - which are based on public key cryptography - have been thrust into the legal limelight as the solution to the problem of guaranteeing secure electronic commerce. The Utah Digital Signature Act was the first legislative initiative to address secure electronic commerce, with efforts by other states and the federal government trailing close behind. (slide 6)
Digital Signatures and information security

In defining digital signatures and how they work, it is helpful to begin by clarifying what they are not. A digital signature is not a digitized image of a handwritten signature. We are all familiar with the electronic pad a person signs upon receiving a package from a delivery service such as Federal Express. In these cases, the handwritten signature is digitized and the image transferred to the electronic document. Once captured, these digitized signatures can be cut and pasted on to any electronic document, making forgery a simple matter. Digital signatures on the other hand are an actual transformation of an electronic message using public key cryptography. Through this process, the digital signature is tied to the document being signed, as well as to the signer, and therefore cannot be reproduced. Furthermore, with the passage of the federal digital signature bill, digitally signed electronic transactions have the same legal weight as transactions signed in ink. Now, a legally binding contract may be formed over the Internet by two parties who have never met, without requiring notarization. This will radically alter the way business is conducted and accelerate the already rapid adoption of so-called electronic commerce. (slide 7)
The basic principles

The principles underlying the use of cryptography in electronic communications are as follows: (slide 8)
1. All data entered into a computer is read as a binary number. For example, when “Jack and Jill went up the hill” is typed in, the computer reads it as “1000111010100111000101,” etc.

2. Because electronic messages are represented numerically in the computer, it is possible to perform mathematical functions on them.

3. Electronic messages can thus be transformed into alternate representations that are unique to the original

 Public key cryptography

There are two distinct encryption techniques. Symmetric cryptography is the most familiar. It is based on a shared secret, or key, and works well within isolated environments. An example of symmetric cryptography is the automated teller machine (ATM) at a bank. When you use an ATM, you gain access to your account by entering a personal identification number (PIN). You are, in effect, authenticating yourself to the bank. You and the bank share a secret, in this case your PIN, and, as such, can communicate securely upon revealing knowledge of this secret. The inherent problem with symmetric cryptography is one of scalability. In order for the communications to be confidential, the exchange of the key, or shared secret, must be done securely. Obviously, this type of secure distribution is not feasible when the number of different people with whom you want to communicate securely escalates beyond a manageable number. The other encryption technique is asymmetric cryptography - also known as public key cryptography - because it involves an asymmetric key pair. This key pair is comprised of what is referred to as a public key and a private key. The public key, as its name suggests, may be freely disseminated. This key does not need to be kept confidential. The private key, on the other hand, must be kept secret. The owner of the key pair must guard his private key closely, as sender authenticity and non-repudiation are based on the signer having sole access to his private key. There are several important characteristics of these key pairs. First, while they are mathematically related to each other, it is impossible to calculate one key from the other. Therefore, the private key cannot be compromised through knowledge of the associated public key. Second, each key in the key pair performs the inverse function of the other. What one key does, only the other can undo. (slide 9)(slide 10)

Digital Signature components

Digital signatures are based on asymmetric, or public key, cryptography. In addition to a key pair and some type of electronic communications, the digital signing and verification processes involve something known as a hash algorithm and a signature algorithm. The hash and signature algorithms are extremely complex mathematical equations. The hash algorithm is performed on the original electronic message’s binary code, resulting in what is referred to as a message digest, which is a 160-bit string of digits that is unique to the original message. The signature algorithm is then performed on this message digest. The resultant string of digits is the digital signature. The signer’s private key is incorporated into the signature algorithm during the signing process, and the public key is incorporated into the signature algorithm during the verification process. An extremely rudimentary mathematical example of this would be as follows:

100 Original Message

 *2 Hash Algorithm
 = 200 Message Digest

 *2 Signature Algorithm

 = 400 Digital Signature (*2 is primary key)

For the sake of simplicity, assume that the binary number 100 represents the original message. Again for simplicity, assume the hash algorithm is simply to multiply the binary by two. The result of passing the binary of the original message through the hash algorithm is the message digest, or the unique fingerprint of the message, which is 200 in this example. This message digest is then passed through the signature algorithm, of which the signer’s private key is a component. In this example, the signature algorithm has been drastically simplified to multiplying by two to the *, where * equals the signer’s private key, in this case 2. The resulting number of 800 is the digital signature. In contrast to a digitized signature, a digital signature has nothing to do with the signer’s name or handwritten signature. It is an actual transformation of the message itself that incorporates a “secret” known only to the signer, and is therefore tied to both the signer and the message being signed. A signer’s digital signature will be different for each different document he signs. (slide1) (slide 12)
Digital Signature Mechanics

An application signs or verifies hash values by using the CryptSignHash and CryptVerifySignature functions. The application often specifies a description string, which must be added to the hash object before it is signed or verified.

The following is a typical signature process:

1. The application creates a hash object by using CryptCreatHash.

2. The application adds data to the hash object by using CryptHashData,CryptHashSessionKey. both.

3. The application calls the CryptSignHash function to sign the hash value, specifying a description string.

4. The operating system layer accepts the CryptSignHash invocation. If the descriptive string is not already in Unicode, the system converts it to Unicode and hands off the task to the CSP using the CPSignHash function.

5. The CSP adds the Unicode description string to the hash object, using the CPHashData function. The terminating NULL character is not hashed in.

6. The CSP completes the hash and obtains the hash value to be signed by using the CPGetHashParam function.

7. The CSP takes the hash value, pads it out to the size of the public key modulus, and encrypts it by using the signature private key.

The padding around the hash value must be in the format specified by the Public-Key Cryptography Standards (PKCS), available from RSA Data Security. The hash algorithm used must be encoded.

8. The signature block is returned to the application, using the operating system layer.

Hash and Digital Signature Functions

The functions described in this section are used in applications to compute hashes, and to create and verify digital signatures. Hashes are also known as message digests.

The following table describes each function.

	Function
	Description

	CryptCreateHash
	Creates an empty hash object.

	CryptDestroyHash
	Destroys a hash object.

	CryptDuplicateHash
	Duplicates a hash object.

	CryptGetHashParam
	Retrieves a hash object parameter.

	CryptHashData
	Hashes a block of data, adding it to the specified hash object.

	CryptHashSessionKey
	Hashes a session key, adding it to the specified hash object.

	CryptSetHashParam
	Sets a hash object parameter.

	CryptSignHash
	Signs the specified hash object.

	CryptVerifySignature
	Verifies a digital signature, given a handle to the hash object

DSIG - Digital Signature Table
The DSIG table contains the digital signature of the OpenTypeTM font. Signature formats are widely documented and rely on a key pair architecture. Software developers, or publishers posting material on the Internet, create signatures using a private key. Operating systems or applications authenticate the signature using a public key.

The W3C and major software and operating system developers have specified security standards that describe signature formats, specify secure collections of web objects, and recommend authentication architecture. OpenType fonts with signatures will support these standards. OpenType fonts offer many security features:

(
Operating systems and browsing applications can identify the source and integrity of font files before using them,

(
Font developers can specify embedding restrictions in OpenType fonts, and these restrictions cannot be altered in a font signed by the developer.

The enforcement of signatures is an administrative policy, enabled by the operating system. Windows will soon require installed software components, including fonts, to be signed. Internet browsers will also give users and administrators the ability to screen out unsigned objects obtained on-line, including web pages, fonts, graphics, and software components. Anyone can obtain identity certificates and encryption keys from a certifying agency, such as Verisign or GTE's Cybertrust, free or at a very low cost.

The DSIG table is organized as follows. The first portion of the table is the header:

	Type
	Name
	Description

	ULONG
	ulVersion
	Version number of the DSIG table

	USHORT
	usNumSigs
	Number of signatures in the table

	USHORT
	usFlag
	permission flags

This header information is followed by entries for each of the signatures in the table specifying format and offset information:

	Type
	Name
	Description

	ULONG
	ulFormat
	format of the signature

	ULONG
	ulLength
	Length of signature in bytes

	ULONG
	ulOffset
	Offset to the signature block from the beginning of the table

This information is then followed by one or more signature blocks:

	Type
	Name
	Description

	USHORT
	usReserved1
	Reserved for later use; 0 for now

	USHORT
	usReserved2
	Reserved for later use; 0 for now

	ULONG
	cbSignature
	Length (in bytes) of the PKCS#7 packet in pbSignature

	BYTE []
	bSignature
	PKCS#7 packet

The format identifier specifies both the format of the signature object, as well as the hashing algorithm used to create and authenticate the signature. Currently only one format is defined, but at least one other format will soon be defined to handle subsetting scenarios. Format 1 supports PKCS#7 signatures with X.509 certificates and counter-signatures, as these signatures have been standardized for use by the W3C with the participation of numerous software developers.

Format 1: For whole fonts, with either TrueType outlines and/or CFF data

PKCS#7 or PKCS#9. The signed content digest is created as follows:

1. If there is an existing DSIG table in the font,

1. Remove DSIG table from font.

2. Remove DSIG table entry from sfnt Table Directory.

3. Adjust table offsets as necessary.

4. Zero out the file checksum in the head table.

5. Add the usFlag (reserved, set at 1 for now) to the stream of bytes

2. Hash the full stream of bytes using a secure one-way hash (such as MD5) to create the content digest.

3. Create the PKCS#7 signature block using the content digest.

4. Create a new DSIG table containing the signature block.

5. Add the DSIG table to the font, adjusting table offsets as necessary.

6. Add a DSIG table entry to the sfnt Table Directory.

7. Recalculate the checksum in the head table.

Prior to signing a font file, ensure that all the following attributes are true.

(
The magic number in the head table is correct.

(
Given the number of tables value in the offset table, the other values in the offset table are consistent.

(
The tags of the tables are ordered alphabetically and there are no duplicate tags.

(
The offset of each table is a multiple of 4. (That is, tables are long word aligned.)

(
The first actual table in the file comes immediately after the directory of tables.

(
If the tables are sorted by offset, then for all tables i (where index 0 means the the table with the smallest offset), Offset[i] + Length[i] <= Offset[i+1] and Offset[i] + Length[i] >= Offset[i+1] - 3. In other words, the tables do not overlap, and there are at most 3 bytes of padding between tables.

(
The pad bytes between tables are all zeros.

(
The offset of the last table in the file plus its length is not greater than the size of the file.

(
The checksums of all tables are correct.

(
The head table's checkSumAdjustment field is correct.

Digital Signature processes

The following are graphical representations of the digital signing and verification processes, respectively: (slide 13) (slide 14)
	

	

	[image: image1.png]Verifying a digital signature

Signer's Public Key.

If the message
digests are.

Hessage
Digest

gnature
veriy, i they are
different in any
way, the signature|
will not verify.

Public key infrastructure
It is now possible for an individual to purchase digital signature software, or download it from a browser, and install it on his computer. He can then generate a key pair and release his public key to the on-line world, using any identity he chooses, with no guarantee that the identity is authentic. This scenario underscores the need for some type of entity to serve as a trusted third party (TTP) to vouch for individuals’ identities, and their relationship to their public keys. This entity, in public key infrastructure (PKI) terminology, is referred to as a certification authority (CA). The CA is a trusted third party that issues digital certificates to its subscribers, binding their identities to the key pairs they use to digitally sign electronic communications. Digital certificates contain the name of the subscriber, the subscriber’s public key, the digital signature of the issuing CA, the issuing CA’s public key, and other pertinent information about the subscriber and his organization, such as his authority to conduct certain transactions, etc. These certificates have a default life cycle of 1 year, and can be revoked upon private key compromise, separation from an organization, etc. These certificates are stored in an on-line, publicly accessible repository. The repository also maintains an up-to-date listing of all the certificates, that have not yet expired, which have been revoked, referred to as a certificate revocation list (CRL). The repository also maintains an electronic copy of the certification practice statement (CPS) of each CA that publishes certificates to it. The CPS outlines the policies and procedures of each CA’s operations from registration of a subscriber to the physical security surrounding their CA system. (slide 15) (slide 16)

PKI Process Flow (slide 17)

The following is a graphical representation of the PKI process flow.

[image: image2.png]PKI Process Flow

Certification

Authority. Repository

Relying Party

PKI Process Flow (slide 18)

Step 1. Subscriber applies to Certification Authority for Digital Certificate.

Step 2. CA verifies identity of Subscriber and issues Digital Certificate.

Step 3. CA publishes Certificate to Repository.

Step 4. Subscriber digitally signs electronic message with Private Key to ensure Sender Authenticity, Message Integrity and Non-Repudiation and sends to Relying Party.

Step 5. Relying Party receives message, verifies Digital Signature with Subscriber's Public Key, and goes to Repository to check status and validity of Subscriber's Certificate.

Step 6. Repository returns results of status check on Subscriber’s Certificate to Relying Party.

Digital signature applications

Digital signatures are critical to the electronic conversion of any presently paper-based process that requires strong authentication of both the sender and the contents of the message, and/or non-repudiation. The number of such applications is virtually endless, ranging from purchase order systems, time cards and automated forms processing to contracts and remote financial transactions or inquiries.

The first major implementation in the state of Utah is the electronic filing of court documents. The pilot will begin with criminal filings, as these are filed by the state prosecutors, and have no filing fee associated with them. As the pilot moves into civil litigation, the Utah State Bar will act as a CA on behalf of its members, and will issue digital certificates that are tied to membership status with the Bar This will enable a filing attorney’s Bar status to be automatically verified by the courts when the attorney attempts to file electronically.

Summary

This presentation covers the Digital Signature, what is a Digital Signature, the basic principle and it components. How to create and verifying the Digital Signature, and its application range, as well.

It also describes the Public key cryptography, its definition and the character of the key pairs.

Finally, it mentions about the Public key infrastructure(PKI) and the PKI Process Flow.

MiniDictionary:

exchange key

See exchange key pair.

exchange key pair

A public/private key pair used to encrypt session keys so that they can be safely stored and exchanged with other users. Exchange key pairs are created by calling CryptGenKey.

Compare signature key pair.

hash

A fixed-size result obtained by applying a mathematical function (the hashing algorithm) to an arbitrary amount of data. (Also known as "message digest.")

See also hashing functions.

hash object

An object used to hash messages or session keys. The hash object is created by a call to CryptCreateHash. The definition of the object is defined by the CSP specified in the call.

hashing algorithm

An algorithm used to produce a hash value of some piece of data, such as a message or session key. Typical hashing algorithms include MD2, MD4, MD5, and SHA-1.

hashing functions

A set of functions used to create and destroy hash objects, get or set the parameters of a hash object, and hash data and session keys.

Hash-Based Message Authentication Code

(HMAC) A keyed hashing algorithm implemented by Microsoft cryptographic service providers. It is a more complex algorithm than the simple CBC MAC algorithm because it uses a secret symmetric key to create the hash.

It can be used with any iterated cryptographic hash algorithm, such as MD5 or SHA-1.

key certification authority (KCA)

A trusted entity that typically keeps a secure database of compound messages signed with the KCA's private key. In practical implementations, the compound messages consist of the user's name, the user's public key, and any other important information about the user.

When the receiving application gets a signed message from a user, the application can then verify the public key received with the message by comparing it to the public key stored in the KCA database.

key container

A part of the key database that contains all the key pairs (exchange and signature key pairs) belonging to a specific user.

Each container has a unique name that is used when calling CryptAcquireContext to get a handle to the container.

key database

A database that contains the persistent cryptographic keys for a specific CSP. The database contains one or more key containers, which individually store all the cryptographic key pairs for a specific user.

See also key container.

key exchange algorithm

An algorithm used to encrypt and decrypt exchange keys (symmetric session keys). Some common key exchange algorithms include DH and KEA.

Each provider type can specify only one key exchange algorithm.

Key Exchange Algorithm (KEA)

The key exchange algorithm specified by a PROV_FORTEZZA provider type. This algorithm is an improved version of the Diffie-Hellman algorithm.

key exchange certificate

A certificate used to encrypt information sent to another party. The certification authority (CA) key exchange certificate can be used by a client to encrypt information sent to the CA.

key exchange functions

A set of functions used to exchange or transmit keys. Key exchange functions can also be used to implement fully authenticated three-phase key exchanges.

key-exchange key pair

See exchange key pair.

key exchange private key

The private key of an exchange key pair.

See also exchange key pair.

key exchange protocol

A protocol by which two parties exchange information to establish a shared secret. The shared secret is then typically used as a symmetric encryption key.

key exchange public key

The public key of an exchange key pair.

See also exchange key pair.

key generation functions

A set of functions used by applications to generate and customize cryptographic keys. These functions include full support for changing chaining modes, initialization vectors, and other encryption features.

key length

Values specified by some providers that indicate the length of the public/private key pairs and session keys used with that provider.

key pair

A private key and its related public key.

PKCS

See Public-Key Cryptography Standards.

PKCS #7 Signed Data

A Public Key Certificate Standard #7 (PKCS #7) signed-data object encapsulates the information used to sign a file. Typically, it includes the signer's certificate and the root certificate.

PKCS #7 STANDARD

A standard that defines a general syntax for encryption and authentication, as well as adding other message attributes, such as timestamps, to the message.

PKCS_7_ASN_ENCODING

Specifies message encoding. Message encoding types are stored in the high-order word of a DWORD (value is: 0x00010000).

plaintext

A message that is not encrypted. Plaintext messages are also referred to as cleartext messages.

privacy

The condition of being isolated from view or secret. With respect to messages, private messages are encrypted messages whose text is hidden from view. With respect to keys, a private key is a secret key concealed from others.

private key

The secret half of a key pair used in a public key algorithm. Private keys are typically used to encrypt a symmetric session key, digitally sign a message, or decrypt a message that has been encrypted with the corresponding public key.

See also public key.

private key BLOB

A key BLOB that contains a complete public/private key pair. Private key BLOBs are used by administrative programs to transport key pairs. As the private key portion of the key pair is extremely confidential, these BLOBs are typically kept encrypted with a symmetric cipher.

These key BLOBs can also be used by advanced applications where the key pairs are stored within the application, rather than relying on the CSP's storage mechanism.

A key BLOB is created by calling CryptExportKey.

process

The security context under which an application runs. Typically, the security context is associated with a user, so all applications running under a given process take on the permissions and privileges of the owning user.

public/private key pair

A set of cryptographic keys used for public-key cryptography. For each user, a CSP usually maintains two public/private key pairs: an exchange key pair and a digital signature key pair. Both key pairs are maintained from session to session.

See exchange key pair and signature key pair.

public key

A cryptographic key typically used when decrypting a session key or a digital signature.

The public key can also be used to encrypt a message, guaranteeing that only the person with the corresponding private key can decrypt the message.

See also private key.

public-key algorithm

An asymmetric cipher that uses two keys, one for encryption, the public key, and the other for decryption, the private key.

As implied by the key names, the public key used to encode plaintext can be made available to anyone. However, the private key must remain secret. Only the private key can decrypt the ciphertext.

The public-key algorithm used in this process is slow (on the order of 1,000 times slower than symmetric algorithms), and is typically used to encrypt session keys or digitally sign a message.

See also public key and private key.

public-key BLOB

A BLOB used to store the public key portion of a public/private key pair. Public key BLOBs are not encrypted as the public key contained within is not secret

A public-key BLOB is created by calling CryptExportKey.

Public-Key Cryptography Standards (PKCS)

A set of syntax standards for public-key cryptography covering security functions, including methods for signing data, exchanging keys, requesting certificates, public-key encryption and decryption, and other security functions.

public-key encryption

Encryption that uses a pair of keys, one key to encrypt data and the other key to decrypt data. In contrast, symmetric encryption algorithms that use the same key for both encryption and decryption.

In practice, public-key cryptography is typically used to protect the session key used by a symmetric encryption algorithm. In this case, the public key is used to encrypt the session key, which in turn was used to encrypt some data, and the private key is used for decryption.

In addition to protecting session keys, public-key cryptography may also be used to digitally sign a message (using the private key) and validate the signature (using the public key).

See also public-key algorithm.

Reference:

1. Course Reference Book:

Operating Systems:

Internals and Design Principles (third edi)

William Stallings

2. Web Resource:

http://www.digtrust.com
http://msdn.microsoft.com/library
http://www.abanet.org/scitech
http://www.idcertify.com
http://csrc.nist.gov/pki

PAGE
13

