
18

Object-Oriented Design and Modeling
Using the UML

Overview

This is the second of two chapters on object-oriented tools and techniques
for system development. This chapter builds upon Chapter 10 and teaches
students the important skill of object modeling during systems design. The
students will learn about various unified modeling language (UML) diagrams
and object-oriented design concepts.

Chapter to Course Sequencing

If the adopter is taking a basically object-oriented approach, this chapter
can be used in place of Chapters 13 and 14 in whole or in part. Adopters want-
ing to focus on traditional structured analysis could skip this chapter. But in
almost all cases this chapter should be taught only if Chapter 10 has previ-
ously been covered.

What’s Different Here and Why?

This chapter has be extensively reworked from the sixth edition. The follow-
ing changes have been made:

1. As with all chapters, we have streamlined the SoundStage episode into a
quick narrative introduction to the concepts presented the chapter.

2. The chapter has been revised for UML 2.0.

3. We have rearranged some of the topics in the chapter for better flow. Ex-
amples of this include object reusability and sequence diagrams.

4. The list of design object classes has been expanded to include persis-
tence system classes as well as entity, interface, and control classes. We
have added a programming IDE screen to reinforce the idea that in OO
programming all code exists within a class.

5. We have refined the steps of the object design process to include model-
ing object class states.

6. We expanded the discussion of CRC cards as a method for identifying ob-
ject class behaviors and responsibilities.

18-2 Chapter 18

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

7. We expanded the discussion of sequence diagrams as a method for iden-
tifying object class behaviors and responsibilities. We added explanations
and examples for frames and self-calls. We discussed how behaviors
identified on a sequence diagram impact the class diagram. We added
guidelines for constructing sequence diagrams.

8. We expanded the discussion of object reusability, emphasizing the twin
goals of low coupling and high cohesion.

9. We expanded the discussion of design patterns, including an overview of
the Gang-Of-Four patterns and detailed explanations of two of the GOF
patterns.

10. We added an explanation and example of the communication diagram.

Lesson Planning Notes for Slides

The following instructor notes, keyed to slide images from the PowerPoint
repository, are intended to help instructors integrate the slides into their indi-
vidual lesson plans for this chapter.

Slide 1

McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved.

Chapter 18

Object-Oriented
Design and Modeling

Using the UML

slide appearance after initial mouse click
in slide show mode

This repository of slides is intended to support the
named chapter. The slide repository should be
used as follows:
Copy the file to a unique name for your course
and unit.
Edit the file by deleting those slides you don’t
want to cover, editing other slides as appropriate
to your course, and adding slides as desired.
Print the slides to produce transparency masters
or print directly to film or present the slides using
a computer image projector.

Each slide includes instructor notes. To view
those notes in PowerPoint, click-left on the View
Menu; then click left on Notes View sub-menu.
You may need to scroll down to see the instructor
notes.
The instructor notes are also available in hard-
copy as the Instructor Guide to Accompany Sys-
tems Analysis and Design Methods, 6/ed.

Object-Oriented Design and Modeling Using the UML 18-3

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 2

18-2

Objectives
• Understand entity, interface, control, persistence, and system classes.
• Understand the concepts of dependency and navigability.
• Define visibility and explain its three levels.
• Understand the concept object responsibility and how it is related to

message sending between object types.
• Describe the activities involved in object-oriented design.
• Differentiate between a design use-case narrative and an analysis use-

case narrative.
• Describe CRC card modeling.
• Model class interactions with sequence diagrams.
• Construct a class diagram that reflects design specifics.
• Model object states with state machine diagrams.
• Understand the role of coupling and cohesion in object reuse.
• Describe the use of design patterns and two common design patterns.
• Differentiate between design patterns, object frameworks, and

components.
• Understand the use of communication diagrams, component diagrams,

and deployment diagrams.

No additional notes.

Slide 3

18-3

Teaching Notes
This slide shows the how this chapter's content
fits with the building blocks framework used
throughout the textbook. The emphasis of this
chapter is with the physical design phase, span-
ning the communication focus, knowledge focus,
and process focus. It involves system designers,
systems analysts, and users.

Slide 4

18-4

Object-Oriented Design

Object-oriented design (OOD) – an
approach used to specify the software
solution in terms of collaborating objects,
their attributes, and their methods.
• Continuation of object-oriented analysis

Teaching Notes
TThhee aapppprrooaacchh ooff uussiinngg oobbjjeecctt--oorriieenntteedd tteecchhnniiqquueess
ffoorr ddeessiiggnniinngg aa ssyysstteemm iiss rreeffeerrrreedd ttoo aass oobbjjeecctt--
oorriieenntteedd ddeessiiggnn.. RReeccaallll tthhaatt oobbjjeecctt--oorriieenntteedd
ddeevveellooppmmeenntt aapppprrooaacchheess aarree bbeesstt ssuuiitteedd ttoo pprroo--
jjeeccttss tthhaatt wwiillll iimmpplleemmeenntt ssyysstteemmss uussiinngg eemmeerrggiinngg
oobbjjeecctt tteecchhnnoollooggiieess ttoo ccoonnssttrruucctt,, mmaannaaggee,, aanndd
aasssseemmbbllee tthhoossee oobbjjeeccttss iinnttoo uusseeffuull ccoommppuutteerr
aapppplliiccaattiioonnss.. OObbjjeecctt--oorriieenntteedd ddeessiiggnn iiss tthhee ccoonn--
ttiinnuuaattiioonn ooff oobbjjeecctt--oorriieenntteedd aannaallyyssiiss ((CChhaapptteerr 1100)),,
ccoonnttiinnuuiinngg ttoo cceenntteerr tthhee ddeevveellooppmmeenntt ffooccuuss
aarroouunndd oobbjjeecctt mmooddeelliinngg tteecchhnniiqquueess..
DDuurriinngg oobbjjeecctt--oorriieenntteedd ddeessiiggnn,, eennttiittyy oobbjjeeccttss aarree
rreeffiinneedd wwhhiillee ootthheerr ttyyppeess ooff oobbjjeeccttss aarree iiddeennttiiffiieedd
tthhaatt wwiillll bbee iinnttrroodduucceedd aass tthhee rreessuulltt ooff pphhyyssiiccaall
iimmpplleemmeennttaattiioonn ddeecciissiioonnss ffoorr tthhee nneeww ssyysstteemm..

18-4 Chapter 18

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 5

18-5

Design Classes

In OO programming
every piece of code

resides inside an
object class

Teaching Notes
If your students have programmed in .NET or in
Java or in any other OO environment they should
have noticed that the code they write always
goes into a class. This connection can help stu-
dents understand the next slide.

Slide 6

18-6

Types of Design Classes

Entity Class - contains business related
information and implements analysis classes.
Interface Class - provides the means by which
an actor interacts with the system.

• A window, dialogue box, or screen.
• For nonhuman actors, an application program interface (API).

Control Class - contains application logic.
Persistence Class - provides functionality to
read and write to a database.
System Class - handles operating system-
specific functionality.

Conversion Notes
The sixth edition identified only entity classes,
interface classes, and control classes.
Teaching Notes
Why all these kinds of classes? Structuring the
system this way makes the maintenance and
enhancement of those classes simpler and eas-
ier.
Entity classes are what we worked with in Chap-
ter 10 during object-oriented analysis.
The .NET code on the previous slide is an exam-
ple of an interface class.
Control classes coordinate message among the
other kinds of classes to implement a use case.
The code to handle database reading/writing
could be built into the entity class. But having that
functionality in a separate class keeps the entity
class implementation-neutral, which makes it
more reusable. We will talk more about the value
of reusability later in the chapter.
System classes isolate the other options from the
operating system to keep them implementation-
neutral and more reusable.

Slide 7

18-7

Design Relationships -
Dependency
• A dependency relationship is used to model the

association between two classes:
• To indicate that when a change occurs in one class,

it may affect the other class.
• To indicate the association between a persistent

class and a transient class.
• Interface classes typically are transient

• Illustrated with a dashed arrow

Teaching Notes
The Order Display Window is an interface class
<<UI>>. It is dependent on the Order Processor
class to respond to events initiated from the inter-
face.

Object-Oriented Design and Modeling Using the UML 18-5

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 8

18-8

Design Relationships -
Navigability
• Classes with associations can navigate (send

messages) to each other.
• By default the associations are bidirectional.
• Sometimes you want to limit the message sending to

only one direction.
• Illustrated with an arrow pointing in the direction a

message can be sent.

Teaching Notes
Given a User, you can find that user’s current
password for authentication. But given a pass-
word, you cannot find the corresponding user.

Slide 9

18-9

Attribute and Method Visibility

Visibility – the level of access an external object
has to an attribute or method.
• Public attributes/methods can be accessed/invoked

by any other method in any other object or class.
Denoted by the + symbol

• Protected attributes/methods can be accessed/
invoked by any method in the same class or in
subclasses of that class. Denoted by the # symbol

• Private attributes/methods can be accessed/invoked
by any method in the same class. Denoted by the –
symbol

Method – the software logic that
is executed in response to a message.

No additional notes.

Slide 10

18-10

Object Responsibilities

Object responsibility – the obligation
that an object has to provide a service
when requested and thus collaborate with
other objects to satisfy the request if
required.

• An object responsibility is implemented by
the creation of methods that may have to
collaborate with other objects and
methods.

Teaching Notes
Object responsibility is closely related to the con-
cept of objects being able to send and/or respond
to messages. For example, an ORDER object
may have the responsibility to display a cus-
tomer’s order, but it may need to collaborate with
the CUSTOMER object to get the customer data,
the PRODUCT object to get the product data,
and the ORDER LINE object to get specific order
data about each product being ordered. Thus,
CUSTOMER, PRODUCT, and ORDER LINE
have an obligation to provide the requested ser-
vice (provide requested data) to the ORDER
object.

18-6 Chapter 18

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 11

18-11

Object Responsibility

No additional notes.

Slide 12

18-12

The Process of Object-Oriented
Design
• Refining the use case model to reflect

the implementation environment.
• Modeling class interactions, behaviors,

and states that support the use case
scenario.

• Updating the class diagram to reflect the
implementation environment.

Teaching Notes
In performing object-oriented analysis (OOA) we
identified objects and use cases based on ideal
conditions and independent of any hardware or
software solution. During object-oriented design
(OOD) we want to refine those objects and use
cases to reflect the actual environment of our
proposed solution.

Slide 13

18-13

Refining The Use Case Model

• Step 1: Transform the “Analysis” Use
Cases to “Design” Use Cases
• Implementation details
• Controls
• Window/web page names
• Navigation instructions

• Step 2: Update the Use Case Model
Diagram and Other Documentation to
Reflect any New Use Cases

Teaching Notes
In this iteration of use case modeling, the use
cases will be refined to include details of how the
actor (or user) will actually interface with the sys-
tem and how the system will respond to that
stimulus to process the business event.
The manner in which the user accesses the sys-
tem; via a menu, window, button, bar code
reader, printer, etc. should be explicitly described
in detail. The contents of windows, reports, and
queries should also be specified within the use
case. While refining use cases is often time con-
suming and tedious, it is essential that they are
completed.

Object-Oriented Design and Modeling Using the UML 18-7

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 14

18-14

Design Use Case

Teaching Notes
Notice that the course of events now describes
the windows which will be displayed to the user,
and the contents (i.e., field names) of the win-
dows.
Descriptions of, error messages, special action
buttons, possible cursor movements, and other
window characteristics should be included in
each design use case step.

Slide 15

18-15

Design Use Case (continued)

Teaching Notes
The design use case step includes references to
extension and abstract use cases. Recall that
extension use cases extend the functionality of
the original use case by extracting complex or
hard to understand logic into its own use case.
Abstract use cases are those that contain steps
that are used by more than one design use case.

Slide 16

18-16

Design Use Case (continued)

No additional notes

18-8 Chapter 18

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 17

18-17

Design Use Case (concluded)

No additional notes

Slide 18

18-18

Modeling Class Interactions,
Behaviors, and States

• Step 1: Identify and Classify Use-Case
Design Classes

• Step 2: Identify Class Attributes
• Step 3: Identify Class Behaviors and

Responsibilities
• Step 4: Model Object States
• Step 5: Model Detailed Object

Interactions

Teaching Notes
In this activity we want to identify and categorize
the design objects required by the functionality
that was specified in each use case, and identify
the object interactions, their responsibilities, and
their behaviors.

Slide 19

18-19

Step 1: Identify and Classify
Use-Case Design Classes
Interface, Control, and Entity Classes of Place New Order Use Case

Billing Address
Shipping Address
Email Address
Active Member
Member Order
Member Ordered Product
Product
Title
Audio Title
Game Title
Video Title
Transaction

Place New Order HandlerW00-Member Home Page
W02-Member Profile Display
W03-Display Order Summary
W04-Display Order
Confirmation
W09-Member Account Status
Display
W11-Catalog Display
W15-Product Detail Display

Entity ClassesController ClassesInterface Classes

Teaching Notes
The interface object column contains a list of
objects mentioned in the use case that the users
directly interface with, such as screens, windows,
card readers, and printers. The only way an actor
or user can interface with a system is via an inter-
face object. Therefore, there should be at least
one interface object per actor or user.
The controller object column contains a list of
objects that encapsulate application logic or busi-
ness rules. As a reminder, a use case should
reveal one controller object per unique user or
actor.
The entity object column contains a list of objects
that correspond to the business domain objects
whose attributes were referenced in the use
case.

Object-Oriented Design and Modeling Using the UML 18-9

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 20

18-20

Step 2: Identify Class Attributes

• Many attributes already identified during
object-oriented analysis.

• Revised use cases may mention
additional attributes.

• Must update class diagram to include new
attributes.

No additional notes

Slide 21

18-21

Step 3: Identify Class Behaviors
and Responsibilities

• Analyze use cases to identify required system
behaviors
• Search for verb phrases
• Some will reflect manual actions, others automated

• Associate behaviors and responsibilities with
classes

• Model classes that have complex behavior
• Examine class diagram for additional behaviors
• Verify classifications

No additional notes

Slide 22

18-22

Condensed Behavior List

...
EntityCheck Status of member account

InterfacePrompt user
InterfaceDisplay W03-Order Summary Display window

EntityDetermine cost of the total order
EntityDetermine an expected ship date
EntityVerify the product availability
EntityValidate quantity amount

InterfaceDisplay W02-Member Profile Display window
EntityRetrieve member demographic information

InterfaceDisplay W11-Catalog Display window
EntityRetrieve product catalog information

ControlProcess new member order
Class TypeBehaviors

Condensed Behavior List for Place New Order Use Case

Teaching Notes
Behaviors can be detected by identifying verbs in
a use case narrative.
This is a partial list. See the text for the full list of
behaviors
Some of the behaviors assigned to entity classes
would eventually be implemented with persis-
tence classes. However, the entity class would
maintain the responsibility of calling the persis-
tence class. Thus the entity class would retain the
behavior.

18-10 Chapter 18

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 23

18-23

Tools for Identifying Behaviors and
Responsibilities

Class Responsibility Collaboration (CRC)
Card - a card that lists all behaviors and
responsibilities assigned to a class.

• Often built interactively in a group setting that
walks through a use case

Sequence diagram - a UML diagram that
models the logic of a use case by depicting
the interaction of messages between
objects in time sequence.

Teaching Notes
Different methodologies may emphasize one tool
over the other or use other tools

Slide 24

18-24

CRC Card Listing Behaviors
and Collaborators of a Class

Member Ordered ProductReport order information
Calculate subtotal cost
Calculate total order cost
Update order status
Create Ordered Product
Delete Ordered Product

CollaboratorsBehaviors and Responsibilities
Super Object: Transaction
Sub Object:
Object Name: Member Order

Teaching Notes
CRC stands for Class Responsibility Collabora-
tion.
The CRC card contains all use-case behaviors
and responsibilities that have been associated
with an object.
A CRC card for the object type MEMBER OR-
DER is depicted in the figure above. Notice that
the CRC card contains all use case behaviors
and responsibilities that have been associated
with the object type MEMBER ORDER.
Also in the figure above, the MEMBER ORDER
object needs collaboration from the MEMBER
ORDERED PRODUCT object to retrieve informa-
tion about each of the products being ordered.
Remember if an object needs another object’s
attribute to accomplish a behavior, the collaborat-
ing object needs to have a behavior or method to
provide that attribute.

Slide 25

18-25

Sequence Diagram

1. Actor
2. Interface class
3. Controller class
4. Entity classes
5. Messages

6. Activation bars
7. Return messages
8. Self-call
9. Frame

Teaching Notes
In class we often take a simple use case narra-
tive, scan for verbs to identify behaviors, and
interactively build a sequence diagram.

Object-Oriented Design and Modeling Using the UML 18-11

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 26

18-26

Another Sequence Diagram

No additional notes.

Slide 27

18-27

Guidelines for Constructing
Sequence Diagrams
• Identify the scope of the sequence diagram, whether entire

use-case scenario or one step.
• Draw actor and interface class if scope includes that.
• List use-case steps down the left-hand side.
• Draw boxes for controller class and each entity class that

must collaborate in the sequence (based on attributes or
behaviors previously assigned).

• Add persistence and system classes if scope includes that.
• Draw messages and point each to class that will fulfill the

responsibility.
• Add activation bars to indicate object instance lifetimes.
• Add return messages as needed for clarity.
• Add frames for loops, optional steps, alternate steps, etc.

No additional notes.

Slide 28

18-28

Step 4: Model Object States

• Object state – a condition of the object at one
point in its lifetime.

• State transition event –occurrence that
triggers a change in an object’s state through
updating of one or more of its attribute values.

• State machine diagram – a UML diagram that
depicts:
• the combination of states that an object can assume

during its lifetime,
• the events that trigger transitions between states,
• the rules governing the objects in transition.

Teaching Notes
The concept of state is depicted on the next slide.

18-12 Chapter 18

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 29

18-29

Object State Example

No additional notes.

Slide 30

18-30

State Machine Diagram

Teaching Notes
State machine diagrams are not required for all
objects, just those that have clearly identifiable
states and complex behavior.
The solid circle represents the object’s initial
state.
The object transitions through a life cycle of dif-
ferent states represented by rounded-corner
rectangles
Each arrow represents an event that triggers a
change from one state to another
The solid circle inside the hollow circle represents
the object’s final state.

Slide 31

18-31

Verifying Object Behavior and
Collaboration

Role playing – the act of simulating
object behavior and collaboration by
acting out an object’s behaviors and
responsibilities.
• Participants may assume the role of an actor

on an object type
• Message sending is simulated by using an

item such as a ball that is passed between
the participants.

• Useful for discovering missing objects and
behaviors.

No additional notes.

Object-Oriented Design and Modeling Using the UML 18-13

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 32

18-32

Updating Object Model to Reflect
Implementation Environment

Design class diagram – a diagram that depicts
classes that correspond to software
components that are used to build the software
application. Includes:
• Classes
• Associations and gen/spec and aggregation

relationships
• Attributes and attribute-type information
• Methods with parameters
• Navigability
• Dependencies

Teaching Notes
The Design class diagram is the design equiva-
lent of the class diagram prepared in OOA (Chap-
ter 10).

Slide 33

18-33

Transforming Analysis Class
Diagram to Design Class Diagram

• Add design objects to diagram
• Add attributes and attribute-type

information to design objects
• Add attribute visibility
• Add methods to design objects
• Add method visibility
• Add association navigability
• Add dependency relationships

No additional notes.

Slide 34

18-34

Four Implicit Object Behaviors

• Create new instances
• Update data or attributes
• Delete instances
• Display information

Teaching Notes
When identifying behaviors, don’t forget these
implied behaviors for every object.

18-14 Chapter 18

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 35

18-35

Partial Design Class Diagram

Teaching Notes
The figure above is a partial view of our object
class diagram which correlates to the objects
used in the “Place New Member Order” use case.
Notice we have given each behavior or method a
name. Normally these names reflect the pro-
gramming language used to develop the system.

Slide 36

18-36

Object Reusability

Coupling - the degree to which one class is
connected to or relies upon other classes.

Cohesion - the degree to which the
attributes and behaviors of a single class
are related to each other.

• The two overarching goals of object-oriented
design are low coupling and high cohesion.

• Allows for object reuse.

No additional notes.

Slide 37

18-37

Object Reusability
The OO Success Story

22,00010.43.5Smalltalk
265,00015219PL/1

Software Size
(lines of code)

Level of Effort
(person months)

Project Duration
(calendar months)

Programming
Language

Comparison of an OO Language and a 3GL Language

Teaching Notes
PL/1 is a traditional 3GL language.
Smalltalk is an OO language.

Object-Oriented Design and Modeling Using the UML 18-15

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 38

18-38

Design Patterns

Design pattern - a common solution to a
give problem in a given context, which
supports reuse of proven approaches and
techniques.
• Advantages

• Allow us to design with the experiences of
those who came before rather than having to
"reinvent the wheel."

• Provide designers a short-hand notation for
discussing design issues.

Teaching Notes
You can think of design patterns as an FAQ, a
"rule of thumb" or helpful advice for design is-
sues.

Slide 39

18-39

Sample Design Pattern

Teaching Notes
A exercise to establish the value of design pat-
terns is to brainstorm the kinds of information
systems that could use this pattern. The list could
include utility companies, IT consultants, lumber
yards, and e-commerce sites.

Slide 40

18-40

Gang-of-Four Patterns
Behavioral
Chain of responsibility
Command
Flyweight
Interpreter
Iterator
Mediator
Memento
Observer
State
Strategy
Template method
Visitor

Structural
Adapter
Bridge
Composite
Decorator
Façade
Proxy

Creational
Abstract factor
Builder
Factory method
Prototype
Singleton

Teaching Notes
There are many other patterns beside the GOF
patterns (as the Martin Fowler pattern shown on
the previous slide).

18-16 Chapter 18

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 41

18-41

Strategy Pattern

Define each algorithm in a separate class with a common
interface.

Solution:
How to design for varying and changing policy algorithms?Problem:
BehavioralCategory:
StrategyPattern:

Teaching Notes
A subtype class can be created for any kind of
promotion.
Always called with a calcDiscount behavior.
Can have different internal calculations.
Entire Member Order instance is passed as pa-
rameter.
All other classes interact with Promotion super-
type.

Slide 42

18-42

Adapter Pattern

Add a class that acts as an adapter to convert the
interface of a class into another interface that the client
classes expect.

Solution:

How to provide a stable interface to similar classes with
different interfaces?

Problem:
StructuralCategory:
AdapterPattern:

Teaching Notes
Sales Tax Adapter class provides an unchanging
interface to Member Order class (and others).
Brand X Adapter translates interfaces of Sales
Tax Adapter to interface of Brand X Sales Tax
Calculator
If ever change from Brand X, have only to write a
new adapter subtype.

Slide 43

18-43

Frameworks and Components

Object framework – a set of related,
interacting objects that provide a well-
defined set of services for accomplishing
a task.

Component – a group of objects
packaged together into one unit. An
example of a component is a dynamic link
library (DLL) or executable file.

Teaching Notes
By using frameworks and components develop-
ers can concentrate on developing the logic that
is new or unique to the application, thus reducing
the overall time required to build the entire sys-
tem.

Object-Oriented Design and Modeling Using the UML 18-17

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 44

18-44

Additional UML Design and
Implementation Diagrams

Communication diagram - models the
interaction of objects via messages, focusing on
the structural organization of objects in a network
format.

Component diagram - depicts the organization of
programming code divided into components and
how the components interact.

Deployment diagram - depicts the configuration
of software components within the physical
architecture of the systems hardware "nodes."

Teaching Notes
Each of these diagrams will be illustrated on the
following slides.

Slide 45

18-45

Communication Diagram

1. Class
2. Messages
3. Self-calls
4. Numbering scheme - messages should be numbered with a nested

scheme.

Teaching Notes
A communication diagram is similar to a se-
quence diagram. But while a sequence diagram
focuses on the timing or sequence of messages,
a communication diagram focuses on the struc-
tural organization of objects in a network format.
Sequence diagrams are generally better when
you want to emphasize the sequence of calls.
Communication diagrams are better when you
want to emphasize the links. And they are easier
to draw on whiteboards in when brainstorming
alternative solutions.

Slide 46

18-46

Component Diagram

Teaching Notes
Component diagrams are implementation type
diagrams and are used to graphically depict the
physical architecture of the software of the sys-
tem. They can be used to show how program-
ming code is divided into modules (or compo-
nents) and depict the dependencies between
those components.

18-18 Chapter 18

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 47

18-47

Deployment Diagram

Teaching Notes
Deployment diagrams are also implementation
type diagrams that describe the physical architec-
ture of the hardware and software in the system.
They depict the software components, proces-
sors, and devices that make up the system’s
architecture.

Object-Oriented Design and Modeling Using the UML 18-19

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Answers to End of Chapter Questions and Exercises

Review Questions

1. Entity objects: they contain information about the business itself. They are

also related to items in real life. In entity objects, there are attributes por-
traying the different instances of the entity. Their behaviors are also encap-
sulated.

Interface objects: they describe how users and the system communicate
with each other. Only through interface objects can they interact. The two
main responsibilities of the interface objects are:

a. They convert the input from the users into information so that the sys-

tem can understand and use the information to perform business events.
b. They also take business-related data, translate the data, and present

them to the users.

Control objects: they are used to make a business event performed by the
system more robust and simplified. These objects contain application logic
or business rules to facilitate the control.

2. It is necessary to have the structure of the object-based system divided into

three kinds of objects to have their responsibilities and behaviors work toget
will make the maintenance, enhancement, and abstraction of the objects
easier and simpler. Such an approach is also effective for the client/server
model. The application logic (control objects) and the presentation logic (in-
terface objects) will be put in the client side while the repository (entity ob-
jects) will be put in the server side.

3. Navigability is a kind of association between two classes. Even though most

associations are bidirectional, some are not. Sometimes, it is necessary to
limit the message of a class to be sent to only one direction. The other class
will not have the ability to send a message back. For example, if there is a
STUDENT object, it will only make sure for the STUDENT object to send a
message to the GRADE object to request its grade. It is not common to use
GRADE to find the STUDENT back. Thus, sometimes, it may be necessary
to specify the navigability of an association between to classes.

4. Visibility in object-oriented design is t the way attributes and methods are

accessed by other objects. There are three levels of visibility: public, pro-
tected, and private.

If an attribute or method is public, any other methods or objects can invoke
them.

18-20 Chapter 18

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

If an attribute or method is protected, only the methods in the same class or
the subclass where the attribute or the method belongs can be used to in-
voke them.

If an attribute or method is private, only the methods of the same class can
invoke them.

5. The key reason for object reusability is to reduce system development time

and costs. In order to do so, we have to design the objects using a good gen-
eralization/ specialization hierarchy. The main objective is to design an ob-
ject in a very general way so that it can be used in other application as well.

6. Design patterns can be used to identify and document a set of common so-

lutions used to solve a particular kind of problem. These solutions are
grouped into a library maintained by the developers so that they can use the
solutions to solve similar problems, instead of coming up with new solutions
every single time.

In addition to that, developers will use object frameworks to achieve reus-
ability. Object frameworks contain many related and collaborating objects
to provide a set of services during development so that the development time
can be shorter.

Lastly, components are used by developers. Components are objects being
put together into one unit so that developers can share the programming
codes with others easily.

7. a. Improve the use-case model to show the actual implementation environ-

ment
b. Form interactions and behaviors of the object to support the use-case

scenario
c. Update the object model to show the actual implementation environment

8. The goal is to refine the use-cases so that they will reflect the details of how

the users will interact with the interface of the system and how the system
reacts. Every single step of how the users interface with the system is in-
cluded and described in detail.

This is essential because user manuals and testing will need to utilize use
cases during system implementation. Programmers may need to make use
of the use cases as well when they start building the systems.

9. Since interface objects are the interaction between the users and the sys-

tem, upon the identification process, we should look for terms such as
screens, windows, printers, or menu, in the use cases.

Object-Oriented Design and Modeling Using the UML 18-21

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

For control objects, we should look for items that may contain application
logic or business rules. A rule of thumb is that a use case should show one
control object for each unique system user.

For entity objects, we should look for attributes representing a business
domain, such as customer address, product number, or product name.

10. The goal of constructing object robustness diagrams is to decide how ob-

jects interact with each other to perform a given business event. The com-
ponents of the diagrams include the system user, the interface objects,
controller objects, entity objects, and arrows showing the interaction.

11. We should look for all the verb phrases in the use cases. It is because verb

phrases will indicate a behavior which needs to be completed in a use case
scenario.

12. An object state is the trait and condition of an object at a particular point of

time. The conditions of any given object can change. The object state is
used to depict the different changes. For a change to happen, a state tran-
sition event will need to take place. State transition event is, therefore, the
trigger of the change of an object.

13. a. Identify the state of the object in the very beginning and at the end

b. Identify any other states that an object can have besides its initial and
end state

c. Identify events that trigger the change of state
d. Identify when the change of state happens

14. Sequence diagram: it depicts the detailed interaction between the different

objects in a time sequence.

Collaboration diagram: it shows how messages flow between different ob-
jects in message sequence.

15. • Classes

• Associations, general or specific, and aggregation relationships
• Attributes
• Methods with parameters
• Navigability
• Dependencies

18-22 Chapter 18

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Problems and Exercises

1. Object reusability is the main reason behind using object-oriented methods

for systems development. Object reusability can dramatically reduce system
development time, which in turn dramatically reduces costs.

2.

Programming
Language

Project Duration
(calendar months)

Level of Effort
(person-months)

Software size
(Lines of Code)

PL/1 30.0 240.0 41,800
OO Language 5.5 16.4 3,500

3. • True; 1) to indicate that a change occurring in one class may affect the

other class, and 2) to show the association between a transient class and
a persistent class.

• True
• False; no such term officially exists
• False; interface classes are usually transient
• True

4. a. Display screen, keypad control panel, digital memory card reader, USB

port, parallel port, paper input tray, paper output tray
b. Display screen, keypad, octane selection buttons, card reader, receipt

printer, microphone/speaker, gasoline nozzle, ADC reader (Exxon Mobil
as of this date)

c. ADC reader, electric eye, camera

5. Yes, use cases are refined by adding detailed descriptions of the following

user-system interactions:
• How actors (users) will actually interface with the system and how the

system will actually respond in order to process the business event
• The specific methods and interfaces by which the user accesses the sys-

tem

The overall purpose is to transition the use cases from analysis-based use
cases to design-based use cases

6. • Window controls, e.g., icons, buttons and links, are explicitly stated in

system design use cases.
• The term for a set of collaborating objects which are related, have an in-

terface and which can act as a single unit is component.
• To be able to reuse objects, they need to be designed correctly by defining

Object-Oriented Design and Modeling Using the UML 18-23

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

them within an appropriate generalization/specialization hierarchy so
they are general enough for easy use in other applications.

• During the design phase, use cases and objects are refined to mirror the
actual environment of the solution, rather than an environment based
upon a logical ideal.

7. 1D, 2A, 3M, 4K, 5L, 6H, 7J, 8C, 9E, 10F, 11I, 12B, 13G

8. Your use case should be consistent with the principles and guidelines you

learned in previous chapters. In addition, it should include detailed de-
scriptions of the system-user interactions

9. Your matrix should show at least one interface object per actor or user, and

at least one control object per unique user or actor. The entity objects
should map to the business domain objects that you included in the design
use case.

10. The purpose of the object robustness diagram is to create a model that can

be used to help determine how objects need to interact in order to carry out
the business event. The object robustness diagram represents messages
and communications through the use of arrow, and uses symbols to repre-
sents actors, interface objects, control objects and entity objects.

In your object robustness diagram, interface objects must be used to show
actor-system interactions; control objects are used to coordinate messages
between entity objects and interface objects.

11. Your table shows a behavior for each verb phrase in your design use case.

Each automated behavior should be associated with an object type (control,
entity or interface).

12. The purpose of the CRC card is to document all the use case behaviors, re-

sponsibilities and collaborations that are associated with an object type.
The CRC card should show the object name, and include any sub or super
objects. Behaviors and responsibilities may or may not have an associated
collaborator; however, collaborators must be associated with a specific be-
havior.

13. There is no right or wrong answer to these questions per se. But your an-

swers should indicate that you understand the essential differences be-
tween object-oriented analysis and design, and other approaches.

18-24 Chapter 18

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Projects and Research

1. The intent of this question is to give the student detailed exposure to one of,

if not the leading thinkers in the field of design and enterprise architecture,
and to their theoretical underpinnings. Responses to these questions are
open-ended, but should indicate at least a basic understanding of the rudi-
mentary concepts espoused in Fowler’s works.

2. As with the preceding question, this question is intended to broaden the

student’s base of knowledge vis-a-vis object-oriented design and reusability.
The response should be a well-prepared and in-depth analysis, and one
which indicates that the student has explored the writings of more than au-
thor on this subject.

3. This question is intended to provide practical experience and feedback to

the student in a critical application of object-oriented design. Responses
may vary in terms of subject matter, but should be consistent with the pat-
tern illustrated in the textbook.

4. Same as with preceding question.

5. This question is intended to expose the student to extended object-oriented

design structures. Responses should indicate a basic understanding of
what component and deployment diagram are, and how they are used to de-
scribe physical architecture.

6. The intent of this question is to expose the student to object-oriented pro-

gramming basics in order to gain a better understanding of how the object-
oriented approach is used throughout the entire systems development life
cycle. Responses are somewhat open-ended, but should be able to effec-
tively link the impact of object-oriented analysis and design upon object ori-
ented programming, and to provide a description of the basic constructs
and processes used in object-oriented programming. .NET languages are
(arguably) the most popular object-oriented programming languages at this
time.

Minicases

1. a. A striking difference between traditional UML and web-based UML is that
web-based UML separates class diagrams and differs notations based on
where the action is taking place. I.e. scripts that run on the server are
shown on the server-side class diagram, or with server notations as op-
posed to client-side applications and scripting.

Object-Oriented Design and Modeling Using the UML 18-25

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

b. Web-based, since the diagrams are for a website.

2. a. Clearly, the work done for the mini-cases on this theme will differ dra-
matically. However, you should expect students to address issues such
as source data automation, data handling, productivity and ease of use
issues, and a generally sound analysis.

b. Refer to the chapter contents for referencing UML grading. Insist on
clarity and completeness. The burden of acceptance is when the student
can hand the diagrams over to someone, and that person can create the
system without any other guidance.

c. Grade on correctness, completeness and professionalism.

3. These answers will vary based on the project chosen. Note: check the
source code for academic integrity violations, as many students will “bor-
row” code from peers.

4. Note to professor: Insist that students test each other’s work with the inten-

tion of finding ALL of the flaws and making the prototype the best it can be.
You will need to be clear that the class will not be graded on a curve – that if
all prototypes are excellent, they can all get an “A.” (Otherwise, students
will ‘forget’ to test a portion of the other team’s work!

Team and Individual Exercises

There are no answers to this section.

