
10

Object-Oriented Analysis and Modeling
 Using the UML

Overview

This is the first of two chapters on object-oriented tools and techniques for
system development. This chapter teaches students the important skill of ob-
ject modeling during systems analysis. The students will learn about the vari-
ous unified modeling language (UML) diagrams and build the ones that apply
to systems analysis. Object-oriented design is covered in Chapter 18.

Chapter to Course Sequencing

Depending on the intent of the instructor and the structure of the course,
this chapter can follow a number of chapters. For those courses that want to
focus on object-oriented tools and techniques, it should follow Chapter 7 and
can even be used in place of Chapters 8 an 9. If the intent is to expose the stu-
dent to data, process, and object modeling techniques, this module can be
used in conjunction with Chapters 8 and 9 in any order. For those courses that
treat object-oriented development as advanced material this chapter should be
covered last if time permits.

What’s Different Here and Why?

The following changes have been made to this chapter in the seventh edi-
tion:

1. The biggest change is that this chapter as moved from chapter 11 to
chapter 10. This places all three analysis methods chapters (8, 9, and 10)
together prior to the chapter on the system proposal.

2. As with all chapters, we have streamlined the SoundStage episode into a
quick narrative introduction to the concepts presented the chapter.

3. The chapter has been revised for UML 2.0.

4. We intentionally used the terms object class and object instance as con-
sistently as possible throughout the chapter. In teaching we have found
that students get confused with the terms class, object, and instance. By
focusing on just the difference between object class and object instance
and being more consistent in what they are called, we hope to avoid con-
fusion.

10-2 Chapter Ten

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

5. We specifically relate the concept of multiplicity to the concept of cardi-
nality from data modeling.

6. While still distinguishing between composition and aggregation, we note
that UML 2.0 has dropped the notation for aggregation, and we explain
why.

7. We have included a table listing every UML 2.0 diagram and a list of
which of the diagrams are covered in which chapter of the text.

8. We have added expanded the discussion of activity diagrams, including
partitions, and have revised the coverage for UML 2.0 notation. We have
also added a "Guidelines for Constructing Activity Diagrams" section.

9. We have added coverage for system sequence diagrams, which is another
way to model a specific use case and lays the groundwork for design-level
sequence diagrams in chapter 18.

10. We added a section noting differences between class diagrams and data
diagrams. This was based on confusion we see in students in the class-
room.

Lesson Planning Notes for Slides

The following instructor notes, keyed to slide images from the PowerPoint
repository, are intended to help instructors integrate the slides into their indi-
vidual lesson plans for this chapter.

Slide 1

McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved.

Chapter 10

Object-Oriented
Analysis and Modeling

Using the UML

slide appearance after initial mouse click
in slide show mode

This repository of slides is intended to support the
named chapter. The slide repository should be
used as follows:
Copy the file to a unique name for your course
and unit.
Edit the file by deleting those slides you don’t
want to cover, editing other slides as appropriate
to your course, and adding slides as desired.
Print the slides to produce transparency masters
or print directly to film or present the slides using
a computer image projector.

Each slide includes instructor notes. To view
those notes in PowerPoint, click-left on the View
Menu; then click left on Notes View sub-menu.
You may need to scroll down to see the instructor
notes.

The instructor notes are also available in hard-
copy as the Instructor Guide to Accompany Sys-
tems Analysis and Design Methods, 6/ed.

Object-Oriented Analysis and Modeling Using the UML 10-3

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 2

10-2

Objectives

• Define object modeling and explain its benefits.
• Recognize and understand the basic concepts

and constructs of object modeling.
• Define the UML and its various types of

diagrams.
• Evolve a business requirements use-case

model into a system analysis use-case model.
• Construct an activity diagram.
• Discover objects and classes, and their

relationships.
• Construct a class diagram.

No additional notes.

Slide 3

10-3

Teaching Notes
This slide shows the how this chapter's content
fits with the building blocks framework used
throughout the textbook. Since the object-
oriented approach attempts to unify DATA,
PROCESSES, and COMMUNICATION, the em-
phasis of this chapter is upon all three. It also
reflects the fact that OO analysis is done during
the Requirements Analysis and Logical Design
phases and that it involves not only systems ana-
lysts…but owners and users.

Slide 4

10-4

Introduction to Object Modeling

Object-oriented analysis (OOA) – an
approach used to
1. study existing objects to see if they can be reused

or adapted for new uses
2. define new or modified objects that will be combined

with existing objects into a useful business
computing application

Object modeling – a technique for identifying
objects within the systems environment and
the relationships between those objects.

Teaching Notes
The object modeling technique prescribes the
use of methodologies and diagramming notations
that are completely different from the ones used
for data modeling and process modeling.
In the late 1980s and early 1990s many different
object-oriented methods were being used
throughout the industry. The most notable of
these were Grady Booch’s Booch Method, James
Rumbaugh’s Object Modeling Technique (OMT),
and Ivar Jacobson’s Object-Oriented Software
Engineering (OOSE).

10-4 Chapter Ten

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 5

10-5

Introduction to the UML

Unified Modeling Language (UML) – a
set of modeling conventions that is used
to specify or describe a software system
in terms of objects.

• The UML does not prescribe a method for
developing systems—only a notation that is now
widely accepted as a standard for object
modeling.

Teaching Notes
In 1994 Grady Booch and James Rumbaugh
joined forces to merge their respective object-
oriented development methods with the goal of
creating a single, standard process for develop-
ing object-oriented systems.
Ivar Jacobson joined them in 1995 and the three
altered their focus to create a standard object
modeling language instead of a standard object-
oriented approach or method.
Referencing their own work as well as countless
others in the OO industry, the Unified Modeling
Language (UML) version 1.0 was released in
1997. UML version 2.0 is expected to be released
in late 2000.
At the time of this writing, Booch, Rumbaugh, and
Jacobson have developed and marketed an ob-
ject modeling methodology called the Unified
Method or Objectory.

Slide 6

10-6

Objects & Attributes

Object – something that is or is capable of
being seen, touched, or otherwise sensed,
and about which users store data and
associate behavior.
• Person, place, thing, or event
• Employee, customer, instructor, student
• Warehouse, office, building, room
• Product, vehicle, computer, videotape

Attribute – the data that represent
characteristics of interest about an object.

Teaching Notes
There are several concepts that object-oriented
analysis is based on. Some of these concepts
require a totally new way of thinking about sys-
tems and the development process. These con-
cepts have presented a formidable challenge to
veteran developers who must relearn how they
have traditionally viewed systems.
Object-oriented approaches to systems develop-
ment are concerned with identifying attributes
that are of interest regarding an object. It is im-
portant to note that with advances in technology,
attributes have evolved to include more than
simple data characteristics. Today, objects may
include newer attribute types, such as a bitmap or
a picture sound, or even video.
Have students provide examples of objects, in-
stances of objects, and their attributes that exist
in the classroom. For instance, pen is an object,
the pen I use is an instance of that object, color of
ink is an attribute.

Slide 7

10-7

Objects & Object Instances
Object instance – each specific person, place,
thing, or event, as well as the values for the
attributes of that object.

Teaching Notes
This figure depicts the symbol for representing an
object instance using the UML modeling notation.
An object is represented using a rectangle. The
name of the object instance and its classification
are underlined and appear at the top of the sym-
bol. The attribute values for the object instance
are optionally recorded within the symbol and are
separated from the object name with a line.
The name of an object instance is the value of
the attribute that uniquely identifies it. The attrib-
ute customer number, whose value is 412209,
uniquely identifies that instance of customer.
Thus, 412209 is the name of the object instance
and customer is its classification.

Object-Oriented Analysis and Modeling Using the UML 10-5

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 8

10-8

Behavior & Encapsulation

Behavior – the set of things that the
object can do that correspond to functions
that act on the object’s data (or attributes).
• In object-oriented circles, an object’s

behavior is commonly referred to as a
method, operation, or service.

Encapsulation – the packaging of several
items together into one unit.

Teaching Notes
In encapsulation, both attributes and behavior of
the object are packaged together. The only way
to access an object's attributes is through that
object’s behaviors. No other object may perform
that object’s behavior.
Have students identify the behaviors of a door,
window, or VCR.

Slide 9

10-9

Object Classes

Object Class – a set of objects that
share common attributes and behavior.
Sometimes referred to as a class.

Conversion Notes
This is a new slide in the seventh edition

Slide 10

10-10

Representing Object Classes
in the UML

Teaching Notes
In UML an object class is represented using a
rectangle symbol.
The object rectangle is divided into three por-
tions.
The top portion contains the name of the class.
The middle portion contains the names of the
attributes.
The lower portion contains the behaviors (or
methods).
To simplify the appearance of a diagram, or to
specify more details about a class, class symbols
can be drawn without methods or attributes, or
the attribute portion can be expanded to include
data types, lengths, etc. The appearance de-
pends on what the author of the diagram is in-
tending to communicate.

10-6 Chapter Ten

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 11

10-11

Inheritance

Inheritance – the concept wherein methods
and/or attributes defined in an object class can
be inherited or reused by another object class.

Teaching Notes
Inheritance is a critical concept of OO. In fact for
a programming language or DBMS to be consid-
ered OO, it must support inheritance. In inheri-
tance, the child class inherits the attributes and
methods from its parent class(s).

Slide 12

10-12

Inheritance (cont.)

Teaching Notes
The terms Generalization and Specialization will
be defined on the next slide.
Walk the students through this diagram.
The Person object has an attribute last name.
Therefore the Student and Teacher objects that
are based on Person also have an attribute last
name as well as their own attributes (GPA or
rank).
The Person object has a method walk. Therefore
Student and Teach also have a method walk as
well as their own methods (enroll or lecture).

Slide 13

10-13

Generalization/Specialization,
Supertype, and Subtype
Generalization/specialization – technique wherein
attributes and behaviors common to several types of object
classes are grouped (or abstracted) into their own class,
called a supertype.

Supertype – an entity that contains attributes and
behaviors that are common to one or more class subtypes.
Also referred to as abstract or parent class.

Subtype – an object class that inherits attributes and
behaviors from a supertype class and may contain other
attributes and behaviors unique to it. Also referred to as a
child class and, if it exists at the lowest level of the
inheritance hierarchy, as concrete class.

Teaching Notes
The previous slide illustrates these terms.
The class supertype will have one or more one-
to-one relationships to object class subtypes.
These relationships are sometimes called “IS A”
relationships (or “WAS A” or “COULD BE A”)
because each instance of the supertype “is also
an” instance of one or more subtypes.

Object-Oriented Analysis and Modeling Using the UML 10-7

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 14

10-14

UML Representation of
Generalization/Specialization

Teaching Notes
Have students identify what attributes and meth-
ods are inherited by the STUDENT and
TEACHER classes.

Slide 15

10-15

Object/Class Relationships

Object/class relationship – a natural
business association that exists between
one or more objects and classes.

Teaching Notes
Objects and classes do not exist in isolation. The
things they represent interact with and impact
one another to support the business mission.
An object/class relationship is graphically illus-
trated in UML as a connecting line between two
classes. This relationship is commonly referred to
as an association. The line is labeled with a verb
phrase that describes the association. All asso-
ciations are implicitly bidirectional, meaning that
they can interpreted in both directions.
TThhee figure above shows the complexity or degree
of each association. For example, in the above
business assertions, we must also answer the
following questions:
Must there exist an instance of CUSTOMER for
each instance of ORDER? Yes!
Must there exist an instance of ORDER for each
instance of CUSTOMER? No!
How many instances of ORDER can exist for
each instance of CUSTOMER? Many!
How many instances of CUSTOMER can exist for
each instance of ORDER? One!

Slide 16

10-16

UML Multiplicity Notations

Multiplicity – the
minimum and
maximum number
of occurrences of
one object/class
for a single
occurrence of the
related
object/class.

Teaching Notes
Because all associations are implicitly bidirec-
tional, multiplicity must be defined in both direc-
tions for every association.

10-8 Chapter Ten

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 17

10-17

Aggregation

Aggregation – a relationship
in which one larger “whole”
class contains one or more
smaller “parts” classes.
Conversely, a smaller “part”
class is part of a “whole”
larger class

• In UML 2.0 the notation for
aggregation has been
dropped

Teaching Notes
Aggregation relationships do not support inheri-
tance. Their benefit lies in the ability to send a
message to the parent class and that message is
automatically applied to all the child classes.
Have students provide other examples of objects
where aggregation relationships are appropriate
(car – or any bill of material,, order-line item,
etc.).

Slide 18

10-18

Composition
Composition –
an aggregation
relationship in
which the
“whole” is
responsible for
the creation and
destruction of its
“parts.” If the
“whole” were to
die, the “part”
would die with it.

Teaching Notes
All composition relationships are aggregation
relationships. But not all aggregation relation-
ships are composition relationships.
Ask students why composition is appropriate for
the Book and Chapter classes but not for the
Team class.

Slide 19

10-19

Messages

Message – communication that occurs when
one object invokes another object’s method
(behavior) to request information or some action

Teaching Notes
The object sending a message does not need to
know how the receiving object is organized inter-
nally or how the behavior is to be accomplished,
only that it responds to the request in a well-
defined way.
A message can be sent only between two objects
that have an association between them.

Object-Oriented Analysis and Modeling Using the UML 10-9

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 20

10-20

Polymorphism
Polymorphism – the
concept that different
objects can respond to
the same message in
different ways.

Override – a
technique whereby a
subclass (subtype)
uses an attribute or
behavior of its own
instead of an attribute
or behavior inherited
from the class
(supertype).

Teaching Notes
Polymorphism supports reusability in that the
same message can be sent to different objects
and be interpreted different ways. For example,
let’s say we have a method called “Compute Pay”
and two objects named FULL-TIME EMPLOYEE
and PART-TIME EMPLOYEE. The same “com-
pute pay” message can be sent to both objects
but how each object reacts/responds to the mes-
sage is different. A full-time employee’s pay may
be composed of a weekly salary (minus deduc-
tions) whereas a part-time employee only gets
paid for the hours worked (minus deductions).
When the PART-TIME EMPLOYEE object re-
ceives a message to “compute pay,” it will over-
ride the behavior of the EMPLOYEE supertype
and use its own behavior. But because of poly-
morphism, the object sending the message never
knows the difference.

Slide 21

10-21

UML 2.0 Diagrams

Decomposes internal structure of class, component, or use case.Composite Structure

Models how events can change the state of an object over its
lifetime, showing both the various states that an object can
assume and the transitions between those states.

State Machine

Similar to a class diagram, but instead of depicting object
classes, it models actual object instances with current attribute
values. The object diagram provides the developer with a
"snapshot" of the system's object at one point in time.

Object

Depicts the system's object structure. It shows object classes
that the system is composed of as well as the relationships
between those object classes.

Class

Depicts sequential flow of activities of a use case or business
process. It can also be used to model logic with the system.

Activity

Depicts interactions between the system and external systems
and users. In other words it graphically describes who will use
the system and in what ways the user expects to interact with the
system. The use-case narrative is used in addition to textually
describe the sequence of steps of each interaction.

Use Case
DescriptionDiagram

Conversion Notes
With the seventh edition we have switched to
UML 2.0.
Teaching Notes
As we study an overview of the systems analysis
life cycle, three chapters will delve into the core
UML diagrams:
Chapter 7 – FAST Requirements Analysis Phase

Use Case Diagrams
Chapter 10 – FAST Logical Design Phase

Activity Diagrams
System Sequence Diagrams (a high-
level kind of Sequence Diagram)
Class Diagrams

Chapter 18 – FAST Physical Design Phase
Sequence Diagrams
Class Diagrams (with more detail)
State Machine Diagrams
Communication Diagrams
Component Diagrams
Deployment Diagrams

10-10 Chapter Ten

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 22

10-22

UML 2.0 Diagrams (cont.)

Depicts how classes or other UML constructs are organized into
packages (corresponding to Java packages or C++ and .NET
namespaces) and the dependencies of those packages.

Package

Depicts the configuration of software components within the
physical architecture of the system's hardware "nodes."

Deployment

Depicts the organization of programming code divided into
components and how the components interact.

Component

Another interaction diagram that focuses on timing constraints in
the changing state of a single object or group of objects.
Especially useful when designing embedded software for devices.

Timing

Combines features of sequence and activity diagrams to show
how objects interact within each activity of a use case.

Interaction Overview

(Collaboration diagram in UML 1.X) Depicts interaction of objects
via messages. While a sequence diagram focuses on the timing
or sequence of messages, a communication diagram focuses on
the structural organization of objects in a network format.

Communication

Graphically depicts how objects interact with each other via
messages in the execution of a use case or operation. It
illustrates how messages are sent and received between objects
and in what sequence.

Sequence
DescriptionDiagram

Conversion Notes
With the seventh edition we have switched to
UML 2.0.
Teaching Notes
As we study an overview of the systems analysis
life cycle, three chapters will delve into the core
UML diagrams:
Chapter 7 – FAST Requirements Analysis Phase

Use Case Diagrams
Chapter 10 – FAST Logical Design Phase

Activity Diagrams
System Sequence Diagrams (a high-
level kind of Sequence Diagram)
Class Diagrams

Chapter 18 – FAST Physical Design Phase
Sequence Diagrams
Class Diagrams (with more detail)
State Machine Diagrams
Communication Diagrams
Component Diagrams

Deployment Diagrams

Slide 23

10-23

The Process of Object Modeling

1. Modeling the functions of the system.
2. Finding and identifying the business

objects.
3. Organizing the objects and identifying

their relationships.

Teaching Notes
These are object-oriented analysis general activi-
ties

Slide 24

10-24

Construction the Analysis
Use-Case Model
System analysis use case – a use case that
documents the interaction between the system
user and the system. It is highly detailed in
describing what is required but is free of most
implementation details and constraints.

1. Identify, define, and document new actors.
2. Identify, define, and document new use cases.
3. Identify any reuse possibilities.
4. Refine the use-case model diagram (if necessary).
5. Document system analysis use-case narratives.

Teaching Notes
As the analyst continues to learn more about the
system and its requirements, the analyst may
discover new actors who interact with the system
and new use cases.
When two use cases have the same business
goal but different users or interface technology,
both use cases may share common steps. We
can extract these common steps into a separate
use case called an abstract use case. Or we can
extract complex steps of a single use case into
an extension use case.

Object-Oriented Analysis and Modeling Using the UML 10-11

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 25

10-25

Revised System
Use-Case Model Diagram

Teaching Notes
A use case model diagram can be used to
graphically depict the system scope and bounda-
ries in terms of use cases and actors.
The use case model diagram for the Member
Services System is shown in the above figure. It
was created using Popkin Software’s System
Architect and represents the relationships be-
tween the actors and use cases defined for each
business subsystem.
The subsystems (UML package symbol) repre-
sent logical functional areas of business proc-
esses.
The partitioning of system behavior into subsys-
tems is very important in understanding the sys-
tem architecture and is very key to defining your
development strategy — which use cases will be
developed first and by whom.

Slide 26

10-26

Use-Case Narrative

Teaching Notes
If Chapter 7 was covered, this will be review

Slide 27

10-27

Use-Case Narrative (cont.)

Teaching Notes
If Chapter 7 was covered, this will be review

10-12 Chapter Ten

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 28

10-28

Abstract Use-Case Narrative

No additional notes.

Slide 29

10-29

Modeling Use-Case Activities

Activity diagram – a
diagram that can be
used to graphically
depict the flow of a
business process, the
steps of a use case, or
the logic of an object
behavior (method).

Conversion Notes
In UML 2.0 the activity diagram renames some
symbols and uses them more formally.

Slide 30

10-30

Activity Diagram Notations
1. Initial node - solid circle

representing the start
of the process.

2. Actions – rounded
rectangles representing
individual steps. The
sequence of actions
make up the total activity
shown by the diagram.

3. Flow - arrows on the
diagram indicating the
progression through the
actions. Most flows do not
need words to identify them unless coming out of decisions.

4. Decision - diamond shapes with one flow coming in and two or
more flows going out. The flows coming out are marked to indicate
the conditions.

5. Merge - diamond shapes with multiple flows coming in and one flow
going out. This combines flows previously separated by decisions.
Processing continues with any one flow coming into the merge.

Conversion Notes
This slide has been extensively revised for the
seventh edition to correspond with UML 2.0 nota-
tion.

Object-Oriented Analysis and Modeling Using the UML 10-13

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 31

10-31

Activity Diagram Notations
(cont.)
6. Fork – a black bar

with one flow
coming in and two
or more flows going
out. Actions on
parallel flows
beneath the fork
can occur in any
order or
concurrently.

7. Join – a black bar with two or more flows coming
in and one flow going out, noting the end of
concurrent processing. All actions coming into
the join must be completed before processing
continues.

8. Activity final – the solid circle inside the hollow
circle representing the end of the process.

Conversion Notes
This slide has been extensively revised for the
seventh edition to correspond with UML 2.0 nota-
tion.

Slide 32

10-32

Activity Diagram with Partitions
9. Subactivity indicator – the

rake symbol in an action
indicates that this action is
broken out in another separate
activity diagram. This helps
you keep the activity diagram
from becoming overly
complex.

10.Connector – A letter inside a
circle gives you another tool
for managing complexity. A
flow coming into a connector
jumps to the flow coming out
of a connector with a matching
letter.

Conversion Notes
This slide has been extensively revised for the
seventh edition to correspond with UML 2.0 nota-
tion.
Teaching Notes
In addition to the subactivity indicator and the
connector, this activity diagram shows partitions
(formerly swmlanes). Partitions are especially
useful when including receiver actors.

Slide 33

10-33

Guidelines for Constructing
Activity Diagrams
• Start with one initial node as a starting point.
• Add partitions if it is relevant to your analysis.
• Add an action for each major step of the use case (or

each major step an actor initiates.
• Add flows from each action to another action, a decision

point, or an end point. For maximum precision of
meaning, each action should have only one flow coming
in and one flow going out with all forks, joins, decisions,
and merges shown explicitly.

• Add decisions where flows diverge with alternating
routes. Be sure to bring them back together with a
merge.

• Add forks and joins where activities are performed in
parallel.

• End with a single notation for activity final.

Conversion Notes
This is a new slide for the seventh edition.

10-14 Chapter Ten

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 34

10-34

Drawing System Sequence
Diagrams

System sequence diagram - a diagram
that depicts the interaction between an actor
and the system for a use case scenario.

• helps identify high-level messages that enter
and exit the system

Conversion Notes
This is a new topic in the seventh edition
Teaching Notes
Emphasize that unlike a context diagram, the
system sequence diagram does not try to depict
the entire system. It depicts only the interactions
for a single scenario of a single use case.

Slide 35

10-35

System Sequence Diagram
Notations

1. Actor - the initiating actor of
the use case is shown with the
use case actor symbol.

2. System – the box indicates
the system as a "black box" or
as a whole. The colon (:) is
standard sequence diagram
notation to indicate a running
"instance" of the system.

3. Lifelines – the dashed vertical
lines extending downward
from the actor and system
symbols, which indicate the
life of the sequence.

4. Activation bars – the bars set
over the lifelines indicate
period of time when participant
is active in the interaction.

Teaching Notes
The concepts are the same as with design-level
sequence diagrams. But the system appears as a
single entity.

Slide 36

10-36

System Sequence Diagram
Notations (cont.)
5. Input messages - horizontal

arrows from actor to system
indicate the message inputs.
UML convention for
messages is to begin the first
word with a lowercase letter
and add additional words with
initial uppercase letter and no
space. In parentheses include
parameters, following same
naming convention and
separated with commas.

6. Output messages –
horizontal arrows from system
to actor shown as dashed
lines. Since they are web
forms, reports, e-mails, etc.
these messages do not need
to use the standard notation.

No additional notes.

Object-Oriented Analysis and Modeling Using the UML 10-15

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 37

10-37

System Sequence Diagram
Notations (cont.)
7. Receiver Actor

– other actors or
external systems
that receive
messages from
the system can
be included.

8. Frame – a box
can enclose
one or more
messages to
divide off a fragment
of the sequence. These can show loops, alternate
fragments, or optional (opt) steps. For an optional
fragment the condition shown in square brackets
indicates the conditions under which the steps will be
performed.

No additional notes.

Slide 38

10-38

Guidelines for Constructing System
Sequence Diagrams
• Identify which scenario of use case you will depict. Purpose

is to discover messages, not to model logic. So more
important to clearly communicate a single scenario.

• Draw a rectangle representing the system as a whole and
extend a lifeline under it.

• Identify each actor who directly provides an input to the
system or directly receives an output from the system.
Extend lifelines under the actor(s).

• Examine use case narrative to identify system inputs and
outputs. Ignore messages inside system. Draw each
external message as a horizontal arrow from the actor's
lifeline to the system or from the system to the actor. Label
inputs according to UML convention.

• Add frames to indicate optional messages with conditions.
Frames can also indicate loops and alternate fragments.

• Confirm that the messages are shown in the proper
sequence from top to bottom.

Conversion Notes
This is a new slide for the seventh edition.

Slide 39

10-39

Finding and Identifying
the Business Objects

1. Find the Potential Objects
• Review each use case to find nouns that correspond

to business entities or events.
2. Select the Proposed Objects

• Not all nouns represent business objects.
• Is it a synonym of another object?
• Is it outside the scope of the system?
• Is it a role without unique behavior, or an external

role?
• Is it unclear or in need of focus?
• Is it an action or an attribute that describes another

object?

Teaching Notes
Using use cases as a source for finding objects is
a popular approach for object identification.

10-16 Chapter Ten

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 40

10-40

Partial Use-Case Narrative with
Nouns Highlighted

DESCRIPTION: This use case describes the event of a member submitting a new order for SoundStage
products via the world wide web. The member selects the items they wish to purchase.
Once they have completed their shopping, the member’s demographic information as
well as their account standing will be validated. Once the products are verified as being
in stock, a packing order is sent to the distribution center for them to prepare the
shipment. For any product not in stock, a back order is created. On completion, the
member will be sent an order confirmation.

PRE-CONDITION: The individual submitting the order must be an active club member.
The member must login in to the system (provide identification) to enter an order.

TRIGGER: This use case is initiated when the member selects the option to enter a new order.
TYPICAL COURSE Actor Action System Response
OF EVENTS: Step 1: The member requests the

option to enter a new order.
Step 2: The system responds by displaying the
catalogue of the SoundStage products.

 Step 3: The Member browses the
available items and selects the ones
they wish to purchase along with the
quantity.

Step 4: Once the member has completed their
selections the system retrieves from file and
presents the member’s demographic information
(shipping and billing addresses).

 Step 5: The member verifies
demographic information (shipping
and billing addresses). If no changes
are necessary they respond
accordingly (to continue).

Step 6: For each product ordered, the system
verifies the product availability and determines
an expected ship date, determines the price to be
charged to the member, and determines the cost
of the total order. If an item is not immediately
available it indicates that the product is
backordered or that it has not been released for
shipping (for pre-orders). If an item is no longer
available that is indicated also. The system then
displays a summary of the order to the member
for verification.

 Step 7: The member verifies the
order. If no changes are necessary
they respond accordingly (to
continue).

Step 8: The system checks the status of the
member’s account. If satisfactory, the system
prompts the member to select the desired
payment option (to be billed later or pay
immediately with a credit card).

No additional notes.

Slide 41

10-41

Potential Object List

No additional notes.

Slide 42

10-42

Cleaning Up List of
Candidate Objects

Teaching Notes
Additional objects were included that are part of
the case study but were not identified in the use
case. These additional objects are introduced
here because they appear in later diagrams.

Object-Oriented Analysis and Modeling Using the UML 10-17

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 43

10-43

Proposed Object List

No additional notes.

Slide 44

10-44

Organizing the Objects and
Identifying their Relationships
1. Identifying Associations and Multiplicity
2. Identifying Generalization/Specialization

Relationships
3. Identifying Aggregation Relationships
4. Prepare the Class Diagram

Class diagram – a graphical depiction of a
system’s static object structure, showing
object classes that the system is
composed of as well as the relationships
between those object classes.

Teaching Notes
It is very important that the analyst not only iden-
tify relationships that are obvious or recognized
by the users. On way to help ensure that possible
relationships are identified is to use a object/class
matrix. This matrix lists the objects/class as col-
umn headings as well as row headings. The ma-
trix can then be used as a check list to ensure
that each object/class appearing on a row is
checked against each object/class appearing in a
column for possible relationships. The name of
the relationship and the multiplicity can be re-
corded directly in the intersection cell of the ma-
trix.
Generalization/Specialization relationships may
be discovered by looking at the class diagram.
Do any associations exist between two objects
that have a one-to-one multiplicity? If so, can you
say the sentence “object X is a object Y” and it be
true? If it is true, you may have a generaliza-
tion/specialization relationship. Also look for ob-
jects which have common attributes and behav-
iors. It may be possible to combine the common
attributes and behaviors into a new super-object.
Why do we want generalization/specialization
relationships? It allows us to take advantage of
inheritance which facilitates the reuse of objects
and programming code.
Aggregation relationships are asymmetric, in that
object B is part of Object A but, object A is not
part of object B. Aggregation relationships do not
imply inheritance, in that object B does not inherit
behavior or attributes from object A. Aggregation
relationships propagate behavior in that behavior
applied to the whole is automatically applied to
the parts.

10-18 Chapter Ten

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 45

10-45

Object Association Matrix

Teaching Notes
This tool can be used to record the possible as-
sociation between any two objects.
To interpret the contents of the cells, start with
the object on the left of the row, read the contents
of the cell, and then finish with the object at the
top of the column. For example:
A CLUB MEMBER places zero to many orders.
A CLUB MEMBER and PRODUCT have no as-
sociation between them.

Slide 46

10-46

Generalization/Specialization
Hierarchies

No additional notes.

Slide 47

10-47

Persistent and Transient
Object Classes

Persistent class – a class that describes
an object that outlives the execution of the
program that created it.
• Stored permanently as in a database

Transient object class – a class that
describes an object that is created
temporarily by the program and lives only
during that program’s execution.

No additional notes.

Object-Oriented Analysis and Modeling Using the UML 10-19

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Slide 48

10-48

Class Diagram

Refer to Figure 10-24
in text for a more

readable copy

No additional notes.

10-20 Chapter Ten

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Answers to End of Chapter Questions and Exercises

Review Questions

1. The Unified Modeling Language (UML). It is not a method for developing

system, but rather a descriptive and analytical set of tools that are used to
perform object-oriented analysis and modeling

2. Something refers to the different types of objects in our environment, which
may include a person, place, thing, or event. Some common examples are
teacher, student, building, office, home, book, automobile, order, payment,
and invoice.

Data refers to the attributes of an object, such as employee name, employee
number, classification, job title, SSN, etc.

Behavior refers to the things that can be done by that object and only that
object, such as the behavior of the object “Broom” would include “sweep.” In
an object-oriented approach, an object’s behavior is also known as methods,
operations, or services.

3. Encapsulation means that the attributes and behaviors of an object are part

of the object. Only through the behavior of the object can its attributes be
accessed or changed.

4. Class: Vehicle

Objects: Automobile, pickup truck, minivan, motorcycle

4. The concept of inheritance means that the attributes and/or behaviors be-

longing to any one object class can be inherited or reused by another object
class. Supertype is an object class – also known as a parent class – that
has behaviors and/or attributes which are common to one or more class
subtypes, also known as a child class. Subtype is an object class that in-
herits attributes and behaviors from the supertype class, but which may
also contain other attributes and behaviors that are unique to the subtype
itself.

5. In OOA and modeling, objects and classes represent entities that must in-

teract with each other in order to sustain the business mission. By defini-
tion, each object and class has at least one business relationship with an-
other object or class.

6. In UML, a connecting line between the two related classes is used. UML re-

fers to this line as an association. A verb phrase is shown above the con-
necting line which describes the association, e.g., “a traffic officer writes a

Object-Oriented Analysis and Modeling Using the UML 10-21

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

ticket. The degree of association, or multiplicity, is also shown in UML
graphical notation

8. A hollow diamond depicts a basic aggregation relationship, in which a larger

“whole” class contains zero or more smaller “part” classes, such as the rela-
tionship of a baseball team to the individual players.

A solid diamond depicts a composition aggregation relationship. This is a
stronger type of aggregation relationship in which the “whole” class is re-
sponsible for the creation and destruction of its “parts,” such as the rela-
tionship of the human body to its organs.

9. Polymorphism refers to when two different objects have a common behavior

to perform, but carry out their behaviors differently. Polymorphism may be
used when a specific behavior in the subtype needs to override the behavior
in the supertype.

10. • Use-case Model Diagrams

• Static Structure Diagrams
• Interaction Diagrams
• State Diagrams
• Implementation Diagrams

11. Sequence diagrams show the sequence of interaction between different ob-

jects through message sending when a use case or an operation executes. .

Collaboration diagrams illustrate the interaction between objects in a net-
work format without taking into account sequence or timing of the interac-
tions.

12. 1) Modeling the functions of the system

2) Finding and identifying the business objects
3) Organizing the objects and identifying their relationships

13. An activity diagram is used to portray the sequential flow of business proc-

ess activities, the steps of a use case, or the logic of an object behavior.

14. A candidate object should be discarded if there is an affirmative answer to

any of the following questions:
• Is the candidate a synonym of another object?
• Is the candidate outside the scope of the system?
• Is the candidate a role without unique behavior, or is it an external role?
• Is the candidate unclear and in need or focus?
• Is the candidate an action or attribute that describes another object?

10-22 Chapter Ten

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

15. • Identify associations and multiplicity

• Identify generalization/ specialization relationships
• Identify aggregation relationships
• Prepare the class diagram

Problems and Exercises

1. a. UML does provide a standard notation method for object modeling. UML

does not provide a systems development methodology.

b. The intent in developing UML was to replace the myriad of object ori-
ented development methods with one single standard process.

c. We would probably have an even greater of confusion of different object-

oriented methodologies than in the early 1990’s. This would tend to in-
crease development costs and time, and reduce product portability and
quality.

2. a. An object is something that a person can see, touch or sense, and which

has data and behavior associated with it. Object-oriented analysis stud-
ies objects with the object of combining and using them to design and
build an information system.

b. Object modeling identifies the objects and the relationships between

them in an information systems environment.

c. Traditional development approaches focus on defining and using data

and process models, while OOA is focused on using objects to define and
build static structure and dynamic behavior models.
 Because traditional development concepts and OOA concepts are so
different, many experienced designers have more problems learning OOA
than students who have never had any experience with traditional design
methods. This may be because the experienced designers must first
“unlearn” the old way of viewing system design before they can grasp the
new concepts.

3. a. Using the textbook terminology, a movie DVD is a ‘thing’ object.

b. Some of the attributes for an object called “Movie DVD” would include:
a. Title
b. ISBN
c. Studio
d. Year Released

Object-Oriented Analysis and Modeling Using the UML 10-23

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

e. Description
f. Format

Note: These are only a few of the attributes for a movie DVD; there are
many others!

c. An example of an object instance for a movie DVD is the movie Fools
Rush In, ISBN 0-7678-0421-X, Columbia TriStar Home Video, 1997.

d. The object class of Movie DVD could be considered a subtype of the ob-

ject class of DVD, which is a supertype, since there are other classes of
DVDs which contain attributes and behaviors unique to them.

4. a. A dog would be considered a “thing” object.

b. Attributes might include:
a. License #
b. Name
c. Age
d. Breed
e. Gender
f. Weight
g. Color

c. Example of a “Dog” object instance:

340055: Dog
licenseNumber = 34055
name = Lassie
age = 15
breed = Collie
gender = female
weight = 65
color = brown

d. Behaviors could include awake or asleep; walking, running, jumping, sit-

ting or lying down; barking, silent, howling or crying.

e.

Dog

10-24 Chapter Ten

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

-licenseNumber
-name
-age
-breed
-gender
-weight
-color
+awake()
+asleep()
+running()
+walking()
+jumping()
+sitting()
+lying down()
+barking()
+crying()
+silent()
+howling()

5. a. Some examples include:

A dog is owned by zero or more persons
A person owns zero or more dogs
A dog is walked by one and only one person
A person walks zero or more dogs.
A dog is petted by zero or more persons
A person pets zero, one or two dogs

6. a. “Dog” will send “pet me” message by wagging tail and looking at “Person.”

Return behavior of “Person” will be to pet “Dog.”

b. The object sending the message doesn’t need to know the internal or-
ganization or the processes that the receiving object goes through to ac-
complish the request. The only that matters to the sending object is
knowing that the request will be responded to in a specific fashion.

c. As association must exist between the two objects in order for the mes-

sage to

7. a. Polymorphism means that the same request made of different objects

doesn’t necessarily result in the same responses; different objects can re-
spond different ways.

b. Like message sending, polymorphism. The object making the request

knows which behavior to request.

Object-Oriented Analysis and Modeling Using the UML 10-25

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

c. Overriding behaviors refers to situations where a subclass uses its own
attributes or behaviors rather than those inherited from the class (super-
type).

8. a. The different groups of UML diagrams and what they depict and/or

model are:
1. Use Case Model Diagrams show the system, its users and their in-

teractions.
2. Static Structure Diagrams model the system’s static structure by

showing its object classes, the relationships between them, and by
modeling actual object instances in order to provide developers
with a “snapshot” at a specific point in time.

3. Interaction Diagrams model the system’s dynamic behavior by
showing interactions, relationships and messages for a set of ob-
jects.

4. State Diagrams also model the dynamic behavior of the system by
depicting its objects in each of their various states, and by depict-
ing the sequential flow of activities.

5. Implementation Diagrams, which model the structure of the infor-
mation system by depicting its software components’ organization
and dependencies, and its physical architecture.

b. The purpose of use case modeling is to identify the functionality required

of the information system.

c. The three major tasks in conducting object-oriented analysis are

1. Modeling system functions
2. Finding and identifying the business objects
3. Organizing the objects and identifying their relationships

d. Business requirements use-case models are refined and changed into

analysis use-case models in order to provide the level of detail that will
be needed to actually design and build the system. This refinement
process is generally a five-step process:

1. The first step is to identify, define and document any actors who
are new or who were not identified when the business require-
ments use-case model was first developed during the analysis
phase.

2. Next is identifying, defining and documenting any new use cases,
since new interactions are created whenever there is a new actor.

3. Third is looking for any reuse possibilities, where two or more use
cases have the same business goals and have a number of steps in
common, which can then be separated and placed in abstract use
case.

4. Update the use-case model diagram if necessary because of new
actors and/or use case diagrams.

10-26 Chapter Ten

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

5. Document the system analysis use-case narratives, which provide
more detail than the business analysis use-case narratives, but
which do not provide implementation details except at a high level.

9. a. Different types of narratives are used because, unlike regular use case

narratives, abstract and extension use cases are not invoked by actors.
Rather, they are invoked by other use cases.

b. Abstract and extension use cases do not include as many data fields as

regular use cases and as a result, they are usually much shorter.

c. No, by definition, an abstract use case is invoked by two or more use

cases.

d. Yes, an extension use case is reusable because it can invoke other ab-
stractor and/or extension use cases.

e. Yes, and only by a single use case.

f. No, but it can invoke other abstract and/or extension use cases.

10. a. UML activity diagrams are different from flowcharts because unlike flow-

charts, they have the capability to show parallel activities that occur con-
currently. This means an activity diagram can show both the actions
and the results of those actions.

b. UML activity diagrams and flowcharts are similar in that they both show

activities that occur in sequential order.
It is a synchronization bar to show parallel activities. It is used both

at the beginning and at the end of the parallel activities; these parallel
activities can occur in any order, but the process can’t terminate until
all parallel activities are completed.

11. a. There are just too many nouns in the typical requirements documenta-

tion for this to be practical method!

b. Use case modeling simplifies identifying potential objects because the
entire scope of the system is represented in the use cases that are cre-
ated. This dramatically reduces the amount of searching required.

c. Some candidate objects, upon examination, may be redundant, may not

be useful as a business object, may be outside the project domain, or
may not even be an object.

d. Candidate objects should be eliminated if they meet any of the following

criteria:

Object-Oriented Analysis and Modeling Using the UML 10-27

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

a. The same as another object
b. Outside the scope of the system
c. Behavior is not unique
d. Role is an external one
e. Ambiguous and unfocused
f. Not an object, but an action or an attribute of another object

Candidate objects that were determined to actually be attributes of an-
other object should be documented, because they will be used at a later
point in the class diagram

12. a. Static

b. Because multiplicity is association-specific and cannot be defined until
the association is identified.

c. An object/class can help to identify associations that may not be obvi-

ous or which have not yet been recognized, by ensuring that each possi-
ble combination is checked for an association.

d. If you have 72 objects and classes, there will be 72 null cells, since an

object or class can’t have an association with itself.

13. a. The remaining steps are:

1. Identifying the generalization/specialization relationships
2. Identifying the aggregation relationships
3. Creating the class diagram

b. Because they show inheritance, which promotes code and object reus-

ability.

c. Find associations between two classes that have a one-to-one multiplic-

ity, and find classes that have common attributes and behaviors, which
may allow the creation of a supertype class.

d. The subtype class in a generalization/specialization relationship inherits

the supertype class’s attributes and behaviors, but also has its own
unique attributes and behaviors. Aggregation relationships are asym-
metric and do not imply relationship; further, behavior of the whole is
also behavior of each of the parts.

e. Yes, it is possible, but it would be highly unusual, since the inherent

nature of business domain classes is persistent.

10-28 Chapter Ten

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

Project and Research

1. a. The newest version is UML 2.0, which as of mid-2005, was in the process

of being released.
b. The Object Management Group is a not-for-profit computer industry

specifications consortium whose membership consists of most of the
large computer companies in this country.

c. Response can be open-ended, but should be thoughtful, logical and
should reference some of the available articles.

d. Same as for Question 1c, and should reference the specific specifica-
tion(s).

e. Same as for Question 1c
f. Students should find this is a competitive and proprietary field. For ex-

ample, as of mid-2005, IBM is planning to continue supporting the UML,
but it also plans to release a “domain-specific modeling language” as part
of Visual Studio.net in the near future.

2. Responses are open-ended, but should indicate that student adequately ex-

plored the subject with the designer, and provided a thoughtful, logical, and
cohesive response.

3. Responses are open-ended as to requirements, so there will be a wide lati-

tude of objects, classes, attributes, relationships and associations that are
identified and described. The tables and diagrams do not need to be all-
inclusive nor exhaustively detailed, but they should not be cursory either.
The associations and relationships should be accurately diagrammed and
consistent with the methods described in the textbook, as well as with the
sample templates, in order to demonstrate that the student understands
and can apply basic UML tools and techniques.

4. As with the preceding question, a wide latitude of responses should be ex-

pected. The use-case narratives should be well thought out and viable. The
activity diagrams should be accurate and reasonably comprehensive in their
use of UML notations

5. What is important in this exercise are not the results per se, but that stu-

dents understand and are able to go through the process of finding and se-
lecting objects, and identifying the associations and multiplicity that exist.
Also, most if not all students should find objects and classes that they had
not previously identified.

6. This may be a difficult exercise to do completely, since the preceding exer-

cises did not require all objects and classes in the system to be identified
and analyzed. Nonetheless, based upon the information the students do
have, they should be able to create a reasonably students should be able to

Object-Oriented Analysis and Modeling Using the UML 10-29

Copyright © 2007 by McGraw-Hill Companies, Inc. All rights reserved.

piece together enough information to depict many of the generalization/
specialization hierarchies and classes, and their relationships.

Mini-Cases

1. Note to professor: problems 1 and 2 are meant to be combined into a full

paper. Problem #1 is a scope and needs background, which is meant to be
the introduction (of sorts). Students have a tendency to get skimpy with
this. However, this introduction and background sets the stage and the
understanding for later work, so it is imperative that they are complete in
their work. Have them focus the paper to the government department’s
head (manager).

2. Note to professor: This is the second part, the bulk of the paper, started in

problem #1. After the students have completed the work, have them join
the two into a full paper, bind it, and present it to their government liaison.

3. Note to professor: It cannot be stressed enough that clarity and complete-

ness are essential. Students many times think that their work is “obvious”
and that it is “easy” to understand. Help them with a reality check by hav-
ing another student team code the Use Cases that they submit. The other
team may not confer, and may only look at the diagrams and descriptions
presented to them.

4. Note to professor: Look for interesting use of technology, appropriate attire,

and good presentation capabilities (such as speaking clearly and facing the
class).

Team and Individual Exercises

There are no answers to this section.

